留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙二醇改性聚乳酸神经导管支架修复大鼠坐骨神经缺损的效果研究

罗东 史振伟 王玉 孙琦 黄转青 程晓清 马玥 杨飞 张莹 王聪聪 许文静 徐风华

罗东, 史振伟, 王玉, 孙琦, 黄转青, 程晓清, 马玥, 杨飞, 张莹, 王聪聪, 许文静, 徐风华. 聚乙二醇改性聚乳酸神经导管支架修复大鼠坐骨神经缺损的效果研究[J]. 解放军医学院学报, 2021, 42(5): 533-540. doi: 10.3969/j.issn.2095-5227.2021.05.011
引用本文: 罗东, 史振伟, 王玉, 孙琦, 黄转青, 程晓清, 马玥, 杨飞, 张莹, 王聪聪, 许文静, 徐风华. 聚乙二醇改性聚乳酸神经导管支架修复大鼠坐骨神经缺损的效果研究[J]. 解放军医学院学报, 2021, 42(5): 533-540. doi: 10.3969/j.issn.2095-5227.2021.05.011
LUO Dong, SHI Zhenwei, WANG Yu, SUN Qi, HUANG Zhuanqing, CHENG Xiaoqing, MA Yue, YANG Fei, ZHANG Ying, WANG Congcong, XU Wenjing, XU Fenghua. Repair of sciatic nerve defect in rats by polyethylene glycol modified polylactic acid nerve conduit scaffold[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2021, 42(5): 533-540. doi: 10.3969/j.issn.2095-5227.2021.05.011
Citation: LUO Dong, SHI Zhenwei, WANG Yu, SUN Qi, HUANG Zhuanqing, CHENG Xiaoqing, MA Yue, YANG Fei, ZHANG Ying, WANG Congcong, XU Wenjing, XU Fenghua. Repair of sciatic nerve defect in rats by polyethylene glycol modified polylactic acid nerve conduit scaffold[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2021, 42(5): 533-540. doi: 10.3969/j.issn.2095-5227.2021.05.011

聚乙二醇改性聚乳酸神经导管支架修复大鼠坐骨神经缺损的效果研究

doi: 10.3969/j.issn.2095-5227.2021.05.011
基金项目: 国家重点研发计划(2017YFA0104702-Xufenghua)
详细信息
    作者简介:

    罗东,男,在读硕士。研究方向:周围神经损伤修复。Email: ld673187435@icloud.com

    通讯作者:

    许文静,女,硕士,副主任技师。Email: wenjingkitty@163.com

    徐风华,女,博士,主任药师。Email: xufh@301hospital.com.cn

  • 中图分类号: R 318.08;R 688

Repair of sciatic nerve defect in rats by polyethylene glycol modified polylactic acid nerve conduit scaffold

Funds: Supported by National Key Research and Development Plan (2017YFA0104702-Xufenghua)
More Information
  • 摘要:   背景  组织工程有望替代自体神经移植,成为修复周围神经缺损的新途径,而组织支架神经导管正是组织工程三要素之一,针对组织支架神经导管的改进方法是目前的研究热点。  目的  制备用于神经修复及再生的聚乙二醇(polyethylene glycol,PEG)改性聚乳酸(poly lactic acid,PLA)神经导管支架并用其修复大鼠坐骨神经缺损。  方法  利用溶剂挥发法制备PLA神经导管支架,用丙烯酰氯与PEG发生酰氯酯化反应合成聚乙二醇双丙烯酸酯(PEGDA),用PEGDA通过化学交联的方式对导管内壁进行改性。电镜观察其微观形貌,利用CCK-8实验检测大鼠神经施万细胞RSC96在聚乙二醇改性的聚乳酸神经导管(PEG-PLA)预处理培养基中的增殖情况。取SD大鼠30只,随机分为自体神经移植组(ANG)、聚乙二醇改性聚乳酸神经导管组(PEG-PLA)、单纯聚乳酸神经导管组(PLA),每组10只。制作大鼠坐骨神经10 mm缺损模型,分别采用自体神经移植、PEG-PLA导管和PLA导管桥接修复。术后行大体观察,术后2周行移植段神经再生速度评价;术后4周、8周、12周行步态分析,测定坐骨神经功能指数;术后12周取材行移植段再生神经组织学评价、腓肠肌湿重恢复率测量和组织学检查。  结果  扫描电镜可见制备的PEG-PLA神经导管内壁质地疏松,有取向性排列整齐的纹路;各组神经导管的浸提液与RSC96细胞共培养后,RSC96细胞增殖未受到抑制,提示各组神经导管的生物相容性良好;术后2周移植段神经免疫荧光染色结果可见PEG-PLA组轴突再生情况优于PLA组,低于ANG组;术后12周,PEG-PLA组的步态分析、腓肠肌肌肉湿重恢复率以及Masson染色等结果均明显优于PLA神经导管组,更接近自体神经移植的修复效果。  结论  聚乙二醇改性聚乳酸神经导管具有良好的组织相容性,神经修复效果良好。

     

  • 图  1  PEG-PLA和PLA神经导管电镜 A:PEG-PLA和PLA神经导管外壁;B:PEG-PLA神经导管内壁;C:PLA神经导管内壁

    Figure  1.  Scanning electron microscope of PEG-PLA nerve conduit A: PEG-PLA and PLA nerve conduit outer wall; B: PEG-PLA nerve conduit inner wall; C: PLA nerve conduit inner wall

    图  2  术后12周各组大鼠3D步态足印

    Figure  2.  At 12 weeks after operation, the 3D gait footprints of rats in each group were observed

    图  3  术后4周、8周、12周各组坐骨神经功能指数(aP<0.05)

    Figure  3.  Sciatic nerve function index of each group at 4, 8 and 12 weeks after surgery (aP<0.05)

    图  4  术后12周大鼠腓肠肌大体观

    Figure  4.  Gross view of gastrocnemius muscle in rats at 12 weeks after surgery

    图  5  腓肠肌湿重恢复率(左)和腓肠肌肌纤维横截面积(右)(aP<0.05;bP<0.01)

    Figure  5.  Gastrocnemius muscle wet weight ratio (left) and mean cross-sectional area of gastrocnemius muscle fiber (right) (aP<0.05; bP<0.01)

    图  6  术后12周大鼠腓肠肌肌肉横截面Masson染色

    Figure  6.  Masson staining of cross section of gastrocnemius muscle in rats at 12 weeks after operation

    图  7  术后2周各组移植段再生神经的免疫荧光染色

    Figure  7.  Results of immunofluorescence staining of regenerated nerve in each group at 2 weeks after surgery

    图  8  术后12周,各组移植段再生神经中段的免疫荧光染色结果。免疫荧光染色可见NF200阳性的再生神经纤维被标记为红色荧光,CD31阳性的血管内皮细胞被标记为绿色荧光

    Figure  8.  Immunofluorescence staining results of the middle segment of regenerated nerve in each group at 12 weeks after operation. Immunofluorescence staining showed that NF200-positive regenerated nerve fibers were marked with red fluorescence and CD31-positive vascular endothelial cells were labeled with green fluorescence

    表  1  神经导管材料对RSC96细胞增殖的影响(n=5)

    Table  1.   Effect of nerve conduit on the proliferation of RSC96 cells in the three groups (n=5)

    Time
    point
    OD valueFP
    PLAPEG-PLAControl
    Day 10.413±0.1800.413±0.0070.432±0.0143.2910.073
    Day 31.324±0.1511.266±0.1171.409±0.0591.9570.184
    Day 52.111±0.2172.089±0.1882.294±0.1831.6380.970
    下载: 导出CSV
  • [1] Hussain G,Wang J,Rasul A,et al. Current status of therapeutic approaches against peripheral nerve injuries:a detailed story from injury to recovery[J]. Int J Biol Sci,2020,16(1): 116-134. doi: 10.7150/ijbs.35653
    [2] Renthal W,Tochitsky I,Yang LT,et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury[J]. Neuron,2020,108(1): 128-144. doi: 10.1016/j.neuron.2020.07.026
    [3] Xiang FF,Wei DQ,Yang YK,et al. Tissue-engineered nerve graft with tetramethylpyrazine for repair of sciatic nerve defects in rats[J]. Neurosci Lett,2017,638: 114-120. doi: 10.1016/j.neulet.2016.12.026
    [4] Myeroff C,Archdeacon M. Autogenous bone graft:donor sites and techniques[J]. J Bone Joint Surg Am,2011,93(23): 2227-2236. doi: 10.2106/JBJS.J.01513
    [5] Manoukian OS,Baker JT,Rudraiah S,et al. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration[J]. J Control Release,2020,317: 78-95. doi: 10.1016/j.jconrel.2019.11.021
    [6] Houshyar S,Bhattacharyya A,Shanks R. Peripheral nerve conduit:materials and structures[J]. ACS Chem Neurosci,2019,10(8): 3349-3365. doi: 10.1021/acschemneuro.9b00203
    [7] Nofar M,Sacligil D,Carreau PJ,et al. Poly(lactic acid)blends:Processing,properties and applications[J]. Int J Biol Macromol,2019,125: 307-360. doi: 10.1016/j.ijbiomac.2018.12.002
    [8] Lönnqvist S,Emanuelsson P,Kratz G. Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds[J]. J Plast Surg Hand Surg,2015,49(6): 346-352. doi: 10.3109/2000656X.2015.1053397
    [9] Dalisson B,Barralet J. Bioinorganics and wound healing[J]. Adv Healthc Mater,2019,8(18): e1900764. doi: 10.1002/adhm.201900764
    [10] Imaninezhad M,Pemberton K,Xu F,et al. Directed and enhanced neurite outgrowth following exogenous electrical stimulation on carbon nanotube-hydrogel composites[J]. J Neural Eng,2018,15(5): 056034. doi: 10.1088/1741-2552/aad65b
    [11] D'souza AA,Shegokar R. Polyethylene glycol(PEG):a versatile polymer for pharmaceutical applications[J]. Expert Opin Drug Deliv,2016,13(9): 1257-1275. doi: 10.1080/17425247.2016.1182485
    [12] Roam JL,Xu H,Nguyen PK,et al. The formation of protein concentration gradients mediated by density differences of poly(ethylene glycol)microspheres[J]. Biomaterials,2010,31(33): 8642-8650. doi: 10.1016/j.biomaterials.2010.07.085
    [13] Gordon T. Peripheral nerve regeneration and muscle reinnervation[J]. Int J Mol Sci,2020,21(22): 8652. doi: 10.3390/ijms21228652
    [14] Gordon T,Sulaiman O,Boyd JG. Experimental strategies to promote functional recovery after peripheral nerve injuries[J]. J Peripher Nerv Syst,2003,8(4): 236-250. doi: 10.1111/j.1085-9489.2003.03029.x
    [15] Ubogu EE. Biology of the human blood-nerve barrier in health and disease[J]. Exp Neurol,2020,328: 113272. doi: 10.1016/j.expneurol.2020.113272
    [16] Xi K,Gu Y,Tang JC,et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery[J]. Nat Commun,2020,11(1): 4504. doi: 10.1038/s41467-020-18265-3
    [17] Zhou G,Chang W,Zhou XQ,et al. Nanofibrous nerve conduits with nerve growth factors and bone marrow stromal cells pre-cultured in bioreactors for peripheral nerve regeneration[J]. ACS Appl Mater Interfaces,2020,12(14): 16168-16177. doi: 10.1021/acsami.0c04191
    [18] Castellanos IJ,Crespo R,Griebenow K. Poly(ethylene glycol)as stabilizer and emulsifying agent:a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres[J]. J Control Release,2003,88(1): 135-145. doi: 10.1016/S0168-3659(02)00488-1
    [19] Zhao X,Li B,Guan X,et al. Peg-enhanced behavioral recovery after sciatic nerve transection and either suturing or sleeve conduit deployment in rats[J]. J Invest Surg,2021,34(5): 524-533. doi: 10.1080/08941939.2019.1654047
    [20] Raimondo S,Fornaro M,Di Scipio F,et al. Chapter 5:Methods and protocols in peripheral nerve regeneration experimental research:part II-morphological techniques[J]. Int Rev Neurobiol,2009,87: 81-103.
    [21] Di Scipio F,Raimondo S,Tos P,et al. A simple protocol for paraffin-embedded myelin sheath staining with osmium tetroxide for light microscope observation[J]. Microsc Res Tech,2008,71(7): 497-502. doi: 10.1002/jemt.20577
    [22] Ikegami Y,Ijima H. Development of heparin-conjugated nanofibers and a novel biological signal by immobilized growth factors for peripheral nerve regeneration[J]. J Biosci Bioeng,2020,129(3): 354-362. doi: 10.1016/j.jbiosc.2019.09.004
    [23] Sun B,Wu T,He L,et al. Development of dual neurotrophins-encapsulated electrosupun nanofibrous scaffolds for peripheral nerve regeneration[J]. J Biomed Nanotechnol,2016,12(11): 1987-2000. doi: 10.1166/jbn.2016.2299
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 网络出版日期:  2021-05-24
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回