Citation: | QI Shuang, XU Haoran, HU Jie, MAO Zhi, HU Xin, ZHOU Feihu. Early mortality risk prediction model for sepsis patients in intensive care unit based on machine learning[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2021, 42(2): 150-155, 181. DOI: 10.3969/j.issn.2095-5227.2021.02.006 |
[1] |
Lobo SM,Rezende E,Mendes CL,et al. Mortality due to Sepsis in Brazil in a real scenario:the Brazilian ICUs project[J]. Rev Bras Ter Intensiva,2019,31(1): 1-4.
|
[2] |
Xie JF,Wang HL,Kang Y,et al. The epidemiology of Sepsis in Chinese ICUs:a national cross-sectional survey[J]. Crit Care Med,2020,48(3): e209-e218. (in Chinese) doi: 10.1097/CCM.0000000000004155
|
[3] |
Rhee C,Dantes R,Epstein L,et al. Incidence and trends of Sepsis in US hospitals using clinical vs claims data,2009-2014[J]. JAMA,2017,318(13): 1241-1249. doi: 10.1001/jama.2017.13836
|
[4] |
Singer M,Deutschman CS,Seymour CW,et al. The third international consensus definitions for Sepsis and septic shock(Sepsis-3)[J]. JAMA,2016,315(8): 801-810. doi: 10.1001/jama.2016.0287
|
[5] |
Knaus WA,Draper EA,Wagner DP,et al. APACHE II:a severity of disease classification system[J]. Crit Care Med,1985,13(10): 818-829. doi: 10.1097/00003246-198510000-00009
|
[6] |
Vellido A,Ribas V,Morales C,et al. Machine learning in critical care:state-of-the-art and a Sepsis case study[J]. Biomed Eng Online,2018,17(Suppl 1): 135.
|
[7] |
Awad A,Bader-El-Den M,McNicholas J,et al. Predicting hospital mortality for intensive care unit patients:Time-series analysis[J]. Health Informatics J,2020,26(2): 1043-1059. doi: 10.1177/1460458219850323
|
[8] |
Ocampo-Quintero N, Vidal-Cortés P, del Río Carbajo L, et al. Enhancing Sepsis management through machine learning techniques: a review[J/OL]. https://doi.org/10.1016/j.medin. 2020.04.003.
|
[9] |
Ocampo-Quintero N, Vidal-Cortés P, Del Río Carbajo L, et al. Enhancing sepsis management through machine learning techniques: A review[J/OL]. https://doi.org/10.1016/j.medin.2020.04.003.
|
[10] |
齐霜,毛智,胡新,等. 基于专科信息系统建立的重症医学数据库:大型三甲医院重症医学数据库的模式[J]. 中华危重病急救医学,2020,32(6): 743-749. doi: 10.3760/cma.j.cn121430-20200520-00393
|
[11] |
Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database[J]. Sci Data, 2016, 3: 160035.
|
[12] |
Johnson AEW,Aboab J,Raffa JD,et al. A comparative analysis of Sepsis identification methods in an electronic database[J]. Crit Care Med,2018,46(4): 494-499. doi: 10.1097/CCM.0000000000002965
|
[13] |
Desautels T, Calvert J, Hoffman J, et al. Prediction of Sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach[J]. JMIR Med Inform, 2016, 4(3): e28.
|
[14] |
Seymour CW,Liu VX,Iwashyna TJ,et al. Assessment of clinical criteria for sepsis:for the third international consensus definitions for Sepsis and septic shock(Sepsis-3)[J]. JAMA,2016,315(8): 762-774. doi: 10.1001/jama.2016.0288
|
[15] |
齐霜,周飞虎. 电子病历数据库脓毒症病例筛选方法综述[J]. 解放军医学院学报,2020,41(9): 918-921. doi: 10.3969/j.issn.2095-5227.2020.09.016
|
[16] |
Dinh A, Miertschin S, Young A, et al. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning[J]. BMC Med Inform Decis Mak, 2019, 19(1): 211.
|
[17] |
Vaid A, Somani S, Russak AJ, et al. Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: model development and validation[J]. J Med Internet Res, 2020, 22(11): e24018.
|
[18] |
Qin XJ,Lin HY,Liu TX,et al. Evaluation value of the quick sequential organ failure assessment score on prognosis of intensive care unit adult patients with infection:a 17-year observation study from the real world[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue,2018,30(6): 544-548.
|
[19] |
Liu ZQ, Meng ZB, Li YF, et al. Prognostic accuracy of the serum lactate level, the SOFA score and the qSOFA score for mortality among adults with Sepsis[J]. Scand J Trauma Resusc Emerg Med, 2019, 27(1): 51.
|
[20] |
Lee CW, Kou HW, Chou HS, et al. A combination of SOFA score and biomarkers gives a better prediction of septic AKI and in-hospital mortality in critically ill surgical patients: a pilot study[J]. World J Emerg Surg, 2018, 13: 41.
|
[21] |
Wang LL,Chen R,Mo ZX,et al. Predictive value of SOFA score combined AGI grading system in elderly patients with sepsis:a retrospective analysis with 91 patients[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue,2017,29(2): 145-149.
|
[22] |
Ueno R, Xu LY, Uegami W, et al. Value of laboratory results in addition to vital signs in a machine learning algorithm to predict in-hospital cardiac arrest: a single-center retrospective cohort study[J]. PLoS One, 2020, 15(7): e0235835.
|
[23] |
Lauritsen SM,Kalør ME,Kongsgaard EL,et al. Early detection of Sepsis utilizing deep learning on electronic health record event sequences[J]. Artif Intell Med,2020,104: 101820. doi: 10.1016/j.artmed.2020.101820
|
[24] |
Scherpf M, Gräßer F, Malberg H, et al. Predicting Sepsis with a recurrent neural network using the MIMIC III database[J]. Comput Biol Med, 2019, 113: 103395.
|
[25] |
虎磐,刘晓莉,毛智,等. 基于集成机器学习的ICU老年多器官功能不全早期死亡风险预测模型[J]. 解放军医学院学报,2019,40(6): 513-518. doi: 10.3969/j.issn.2095-5227.2019.06.003
|
[26] |
Rojas JC,Carey KA,Edelson DP,et al. Predicting intensive care unit readmission with machine learning using electronic health record data[J]. Ann Am Thorac Soc,2018,15(7): 846-853. doi: 10.1513/AnnalsATS.201710-787OC
|
[27] |
Ryoo SM,Lee J,Lee YS,et al. Lactate level versus lactate clearance for predicting mortality in patients with septic shock defined by Sepsis-3[J]. Crit Care Med,2018,46(6): e489-e495. doi: 10.1097/CCM.0000000000003030
|
[28] |
Estenssoro E,Kanoore Edul VS,Loudet CI,et al. Predictive validity of Sepsis-3 definitions and Sepsis outcomes in critically ill patients:a cohort study in 49 ICUs in Argentina[J]. Crit Care Med,2018,46(8): 1276-1283. doi: 10.1097/CCM.0000000000003208
|
[29] |
Mikkelsen ME,Miltiades AN,Gaieski DF,et al. Serum lactate is associated with mortality in severe Sepsis independent of organ failure and shock[J]. Crit Care Med,2009,37(5): 1670-1677. doi: 10.1097/CCM.0b013e31819fcf68
|
[30] |
Pan JZ, Peng ML, Liao C, et al. Relative efficacy and safety of early lactate clearance-guided therapy resuscitation in patients with sepsis: a meta-analysis[J]. Medicine(Baltimore), 2019, 98(8): e14453.
|
[31] |
Jones AE,Shapiro NI,Trzeciak S,et al. Lactate clearance vs central venous oxygen saturation as goals of early Sepsis therapy:a randomized clinical trial[J]. JAMA,2010,303(8): 739-746. doi: 10.1001/jama.2010.158
|
[32] |
Gaies MG,Gurney JG,Yen AH,et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass[J]. Pediatr Crit Care Med,2010,11(2): 234-238. doi: 10.1097/PCC.0b013e3181b806fc
|
[33] |
Qin YR,Liu CJ,Xu F,et al. Association between vasoactive-inotropic score and prognosis in children with septic shock[J]. Chin J Contemp Pediatr,2018,20(2): 106-111.
|