基于机器学习的心脏手术后急性肾损伤预测

范运龙¹,邵佳康¹,吴远斌¹,宋 超¹,沈 铭²,朱思明¹,何潇一³,李梁钢³,任 瞳³,姜胜利³ ¹解放军医学院,北京 100853;²河北医科大学第一医院 心血管内科,河北石家庄 050000;³解放军 总医院第一医学中心 心血管外科,北京 100853

摘要:背景 心脏手术相关的急性肾损伤 (cardiac surgery-associated acute kidney injury, CSA-AKI) 是心脏手术后的主要并发症之一,其对患者的近期和远期生存率都有负面影响。目的 开发基于机器学习技术的预测模型,以此识别心脏手术中CSA-AKI 的高危患者。方法 选取 2017 年 1 月 1 日 - 2018 年 6 月 1 日于解放军总医院第一医学中心心血管外科行心脏手术的 638 例患者的临床资料,包括人口学特征、合并症、术前用药、实验室检查结果和手术相关数据等 78 个变量。采用支持向量机 (support vector machine, SVM)、决策树 (decision tree, DT) 和随机森林 (random foresst, RF) 这 3 个机器学习算法构建 CSA-AKI 的预测模型。通过受试者工作特征 (receiver operating characteristic, ROC) 曲线的曲线下面积 (area under the curve, AUC) 和决策曲线分析 (decision curve analysis, DCA) 评估以上预测模型的性能。沙普利可加性特征解释方法 (shapley additive explanation, SHAP) 用于预测模型的可视化。结果 在纳入分析的 638 例患者中, 188 例 (29.5%) 在术后第 1 周发生 CSA-AKI 。在 3 种机器学习算法中, RF 模型在性能指标 AUC 和 DCA 方面表现最好,其敏感度为 0.784,特异性为 0.934,准确率为 0.927, AUC 为 0.890(95% *CI*: 0.762 ~ 1.000),高于 DT 模型和 SVM 模型。SHAP 图可视化了 RF 模型在个体水平推断 CSA-AKI 的风险。在 RF 变量重要性矩阵图中,排名前 10 的变量依次为肌酐清除率、血红蛋白、手术时间、射血分数、术中尿量、左心房直径、手术权重、血清肌酐、术中失血量和体外循环时间。结论 本研究成功建立了用于预测 CSA-AKI 高危患者的机器学习方法,可供临床医生参考并优化治疗策略以减少术后并发症。

关键词:急性肾损伤;机器学习;心脏手术并发症;随机森林;预测模型

中图分类号:R654.2文献标志码:A文章编号:2095-5227(2022)02-0168-07DOI: 10.3969/j.issn.2095-5227.2022.02.009网络出版时间:2022-03-10 14:39网络出版地址:https://kns.cnki.net/kcms/detail/10.1117.R.20220309.1043.006.html引用本文:范运龙,邵佳康,吴远斌,等.基于机器学习的心脏手术后急性肾损伤预测 [J].解放军医学院学报,2022,43 (2): 168-174.

Prediction of acute kidney injury following cardiac surgery by machine learning

FAN Yunlong¹, SHAO Jiakang¹, WU Yuanbin¹, SONG Chao¹, SHEN Ming², ZHU Siming¹, HE Xiaoyi³, LI Lianggang³, REN Tong³, JIANG Shengli³

¹Chinese PLA Medical School, Beijing 100853, China; ²Department of Cardiology, the First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China; ³Department of Cardiovascular Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China

Corresponding author: JIANG Shengli. Email: JiangSL301hospital@163.com

Abstract: Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the major complications after cardiac surgery, and its course has a negative impact on the short- and long-term survival of patients. **Objective** To develop predictive models based on machine learning techniques, so as to identify patients at high risk for CSA-AKI after cardiac surgery. **Methods** A total of 638 patients who underwent cardiac surgery in the First Medical Center of Chinese PLA General Hospital from January 1, 2017 to June 1, 2018 were enrolled in the study. Totally, 78 variables including demographic characteristics, complications, preoperative medication, laboratory test results, and operation-related data were included in the analysis for modelling. In this study, the support vector machine (SVM), decision tree (DT) and random forest (RF) were used to develop the prediction model of CSA-AKI. The performance of the above predictive models was evaluated by area under the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). Shapley additive exPlanation (SHAP) was used for model visualization. **Results** Of the 638 patients included in the analysis, 188 cases (29.5%) developed CSA-AKI in the first week after surgery. Among the three machine learning algorithms, RF model achieved the best performance in AUC and DCA, with sensitivity of 0.784, specificity of 0.934, accuracy of 0.927 and AUC value of 0.890 (95% *CI*: 0.762-1.000), which were higher than those of DT model and SVM model. The SHAP plots visualized the risk of developing CSA-AKI at the individual level. In the importance matrix of RF model, the top 10 variables were as follows: creatinine clearance, hemoglobin, operation time, ejection fraction, intraoperative urine output, left atrial

收稿日期: 2021-09-05

作者简介:范运龙,男,在读硕士。研究方向:机器学习,心血管疾病的诊治。Email: FanYL301hospital@163.com;共同第一作者:邵佳康,男,在读硕士。研究方向:机器学习,乳腺癌的诊治。Email: sjk2622893631@sina.com

通信作者:姜胜利,男,博士,主任医师,主任。Email: JiangSL301hospital@163.com

diameter, surgical weight of the intervention, serum creatinine, intraoperative blood loss, and cardiopulmonary bypass time. **Conclusion** This study successfully establishes machine learning models for predicting patients at high-risk for CSA-AKI, thus enabling clinicians to optimize treatment strategies and minimize postoperative complications.

Keywords: acute kidney injury; machine learning; cardiac surgery complication; random forest; prediction model

Cited as: Fan YL, Shao JK, Wu YB, et al. Prediction of acute kidney injury following cardiac surgery by machine learning [J]. Acad J Chin PLA Med Sch, 2022, 43 (2): 168-174.

急性肾损伤 (acute kidney injury, AKI) 是心脏 手术后一种常见而严重的并发症,其文献报告的 发生率为10%~30%[1]。值得一提的是,术后患者 轻微的肾功能变化也与其晚期生存差异有关[2]。为 了更好地管理心脏手术相关的急性肾损伤 (cardiac surgery-associated acute kidney injury, CSA-AKI), 既往研究通过传统的逻辑回归分析确定了几种风 险评分,如克利夫兰评分和心脏手术后急性肾损 伤评分[3]。然而,基于传统逻辑回归方法的风险模 型受到其固有线性统计假设的限制,而潜在的非 线性关联在分析过程中并未被考量[4]。此外,由于 逻辑回归分析潜在的过拟合缺陷,在分析过程中 只能纳入一小组输入变量。这导致一些可能对 CSA-AKI 有影响的围术期事件被排除在外,如术 中输血和失血量。因此,需要探讨一种较传统的 逻辑回归分析更有效的 CAS-AKI 预测模型。目 前,机器学习被视为生物医学研究、个性化医学 和计算机辅助诊断的有效手段,可用于诸多任 务,包括风险分层、诊断分类和生存预测[5-8]。然 而,许多医疗专业人员对于机器学习的概念并不 是十分了解,尤其是在心脏外科学领域中将机器 学习作为临床实践中的研究工具仍然处于空白阶 段。因此,本研究试图基于机器学习技术,通过 纳入术前和术中相关变量,分析其在 AKI 事件中 的交互作用,从而构建出符合心脏手术患者特征 的 CSA-AKI 风险预测模型。

资料与方法

 資料 提取 2017年1月1日-2018年6月
 1日于解放军总医院第一医学中心心血管外科行心 脏手术的638例患者的临床资料。纳入标准:
 1)年龄≥18岁;2)手术类型为瓣膜手术、冠状动脉旁路移植和大血管手术。排除标准:1)先天性 心脏病矫正手术;2)数据丢失>10%;3)住院期 间拒绝手术。

 纳入分析的变量 收集患者的 78 个术前和术 中变量来构建纳入分析的变量数据集。1)术前变 量:人口学特征(性别、年龄、体质量指数、美国 麻醉医师协会 ASA 分级、Mallampati 气道分级、 纽约心脏协会 NYHA 功能分级); 病史 (是否有 90 d 内心肌梗死史、是否血脂异常、是否糖尿 病、是否高血压、是否既往心脏手术、是否肺动 脉高压);术前用药(是否服用地高辛、是否服用倍 他乐克、是否服用钙通道阻滞剂、是否服用阿司 匹林、是否使用胰岛素、是否口服降糖药);实验 室检查结果 [红细胞计数、白细胞计数、血小板计 数、中性粒细胞百分比、淋巴细胞百分比、红细 胞比积测定、血红蛋白、活化部分凝血活酶时间 (activated partial thromboplastin time, APTT)], 国 际标准化比值 (international normalized ratio, INR), 血浆纤维蛋白原,丙氨酸氨基转移酶 (alanine aminotransferase, ALT), 天冬氨酸氨基转移酶 (aspartate aminotransferase, AST), 总蛋白, 白蛋 白, 总胆红素, 直接胆红素, 血糖, 血清肌酐, 尿素氮、钾、钠、氯。2)从体外循环记录和麻醉 信息管理系统中提取术中变量:手术类型、手术 时间、体外循环时间、失血量、输血量、尿量、 晶体胶体输注量、术中血流动力学变量、术中是 否使用血管活性药物、是否除颤、是否置入临时 起搏器。此外,计算每名患者的欧洲心脏手术风 险评分 II (Euro SCORE II; http://www.euroscore.org/ calc.html) 和肌酐清除率。

肌酐清除率 (mL/min)=(140-年龄)×重量 (kg)× (0.85, 如果是女性的话)/[72×血清肌酐 (mg/dL)]。 3 终点事件 CSA-AKI 是终点事件,其定义根

3 运点事件 CSA-AKI 定运点事件, 其定义根据 2012 年改善全球肾病预后组织 (Kidney Disease: Improving Global Outcomes, KDIGO) 指南 (https://kdigo.org/conferences/nomenclature): 当术后 7 d内血清肌酐水平大于术前水平 1.5 倍或术后 48 h内血清肌酐较术前提高 0.3 mg/dL 时即可诊断为发生 CSA-AKI 事件。因 KDIGO 中关于 AKI 的尿量诊断标准在回顾性研究中的不准确性,因此未予考虑。

4 数据预处理 在数据分析之前进行了以下数据 预处理:1)进行数据清洁以识别缺失值、异常值 和重复项,缺失值采用平均值进行插补。2)特征 选择和提取:在数据集中识别那些对预测模型构 建最有用/最相关的特征(特征选择)或特征的组合 (特征提取)。

5 模型的构建及验证 数据集由 638 例患者、 78个变量构建而成。将整个数据集按8:2的比例 随机分成训练组和测试组。80%的训练数据集用 于不同机器学习模型的构建。在建模过程中,使 用网格搜索和5折交叉验证优化模型的超参数(为 避免模型的过拟合现象,整个训练集随机分为 5个迭代、5个相等尺寸的子集。在每次迭代时, 1个子集用作测试数据,其余的4个子集用于进行 训练)。此外,余下的20%测试集行进一步内部验 证,以确定预测性能并识别最佳预测因子。采用 支持向量机 (support vector machine, SVM)、决策 树 (decision tree, DT) 和随机森林 (random foresst, RF) 这 3 个机器学习算法来构建 CSA-AKI 事件的 预测模型。使用 ROC 曲线中的 AUC 值、敏感 度、特异性和准确率作为模型的预测效能评价指 标。决策曲线分析 (decision curve analysis, DCA) 图用于展示模型的临床使用价值。此外,沙普利 可加性特征解释方法 (shapley additive explanation, SHAP) 用于模型的可视化处理。

6 统计学分析 数据分析使用 Python 3.6 和 Scikitlearn(https://scikit-learn.org) 包进行。连续变量均呈 非正态分布,以 *Md*(IQR) 表示,其比较采用 Mann Whitney-*U*检验;分类变量以例数(百分比)表示, 其比较采用 χ^2 检验, P < 0.05 为差异有统计学 意义。

结果

1 患者特征 纳收的 638 例患者在术后 7 d内, 188 例 (29.5%) 出现了 CSA-AKI 事件。相比非 AKI 组, AKI 组年龄更大 (*P*<0.001), Euro SCORE II 评分更高 (*P*<0.001); AKI 组合并症比例更高 (*P*<0.05)。同时, AKI 组患者失血量更多 (*P*< 0.001), 术中尿量更少 (*P*<0.001), 手术时间更长 (*P*<0.001), 接受更多的治疗措施,如输注悬浮红 细胞 (*P*<0.001)、血小板 (*P*<0.001); 此外, AKI 组患者血红蛋白和肌酐清除率更低,尿素氮更高 (*P*<0.001)。见表 1。

2 模型效能 针对 CSA-AKI 风险预测所构建的 3 类机器学习模型中, RF 模型在预测效能方面其受试者工作特征曲线的 AUC 数值为 0.890 (95% CI: 0.762~1.000),敏感度为 0.784,特异性为 0.934,准确率为 0.927,优于另外两个预测模型 (图 1、表 2)。采用 DCA 曲线测试不同风险概率阈值下 3 个模型的临床适用性和净获益,结果

表明,3个模型都有很高的临床净获益,其中 RF模型表现最优(图 2)。

3 预测 CSA-AKI 的主要危险因素 使用 SHAP 值来进行 RF 模型中特征贡献度分析和模型可解释 性。图 3 展示了 SHAP 条形图中基于 SHAP 平均 值从大到小排序前 20 名的特征及其对模型输出的 平均影响幅度。结果表明,显著影响模型运行的 10大变量依次是肌酐清除率、血红蛋白、手术时 间、射血分数、术中尿量、左房直径、手术权 重、血清肌酐、术中失血量和体外循环时间。在 这 20 个变量中,有 6 个变量 (手术时间、术中尿 量、手术权重、术中失血量、体外循环时间和术 中使用血管活性药)为术中变量。图4显示了在 RF 模型中发生和未发生 CSA-AKI 事件在个体水 平中的预测分析过程。在发生 CSA-AKI 事件患者 中,起主要促进作用的是低肌酐清除率、低血红 蛋白和高体质量指数,而起主要保护作用的是高 射血分数。在未发生 CSA-AKI 事件患者中, 起主 要保护作用的是高血红蛋白值和高射血分数,而 起主要促进作用的是高血清肌酐值。

讨论

在此回顾性队列研究中,我们使用 78 个术前 和术中变量开发和验证了机器学习算法以预测 CSA-AKI 事件。由机器学习方法建立的模型可以 基于所有患者的数据集来实现早期动态监测,节 省了临床医生的时间^[9]。人工智能 (AI) 与机器学 习在临床医学的研究方面已获得诸多青睐,如用 于评估患者术后结果^[10]、预测低血压^[11]和麻醉深 度^[12]。此外,机器学习也已应用于重症监护医学^[13]、 急诊医学^[14]和神经医学^[15]。随着电子健康记录在 大数据领域的扩展,大量的电子健康记录数据和 人工智能的交融促使机器学习在 AKI 临床研究中 发挥着越来越重要的作用,且目前已成为 AKI 诊 断和预测的有效工具^[16]。

在一篇运用 XGBoost 机器学习算法构建的 CSA-AKI 风险模型报道中,模型的最佳 AUC 为 0.78(95% CI: 0.75~0.80)^[17]。该研究表明,在 心脏手术后预测 AKI,机器学习模型的性能显著 优于传统的逻辑回归模型 (AUC=0.69,95% CI: 0.66~0.72)。先前的风险评分模型的 AUC 通常仅 为 0.55,这可能是由于以往评分模型中纳入的变 量集较少以及数据集中缺乏术中变量^[17]。本研究 中运用了 3 种机器学习算法,其中 RF 模型表现出 模型预测的最佳性能,其敏感度为 0.784,特异性

Tab. 1 General characteristics and perioperative variables of the patients										
Variables	Overall (n=638)	Non-AKI (n=450)	AKI (n=188)	Z/χ^2	Р					
Male (n, %)	386(60.5)	266(59.1)	120(63.8)	1.236	0.266					
Age/(yrs, Md[IQR])	59(51,67)	58(50,66)	62(54,69)	-3.606	< 0.001					
BMI/(kg·m ⁻² , <i>Md</i> [IQR])	25.17(22.553,27.289)	25.36(22.8,27.32)	25(22.08,27.17)	1.054	0.292					
SBP/(mmHg, Md[IQR])	127(115,142)	126(114.25,140)	130(116,145.25)	-1.813	0.070					
Smoking (n, %)	216(33.9)	152(33.8)	64(34.2)	0.012	0.914					
Alcohol (n, %)	93(14.6)	60(13.3)	33(17.6)	1.972	0.160					
Euro Score II (<i>Md</i> [IQR])	1.83(0.91.3.635)	1.32(0.79.2.76)	3.63(1.79.7.04)	-9.988	< 0.001					
ASA physical status classification $(n, \%)$		(,,		20,704	< 0.001					
1	5(0.8)	5(1.1)	0(0)							
2	87(13.9)	77(17.1)	10(5.7)							
3	334(53.4)	238(52.9)	96(54.5)							
4	199(31.8)	130(28.9)	69(39.2)							
5	1(0.2)	0(0,0)	1(0.6)							
NYHA functional classification (n. %)	1(0.2)	0(0.0)	1(0.0)	24 496	< 0.001					
1	145(22.7)	102(22.7)	43(22.9)	21.190						
2	245(38.4)	102(22.7) 190(42.2)	55(29.3)							
3	245(50.4)	1/1(31.3)	65(34.6)							
4	42(6.6)	17(3.8)	25(13.3)							
Myocardial infarction within 90 days $(n \%)$	42(0.0)	17(3.8)	15(8.0)	4 012	0.027					
Dyslinidemia (n. %)	52(5.0)	17(5.8) 20(6.7)	13(8.0)	4.912	0.027					
Diabetes mellitus (n. %)	128(20.1)	30(0.7) 72(16.2)	21(11.2) 55(20.2)	14.044	< 0.030					
Hypertension $(n, \%)$	120(20.1)	171(28)	104(55, 2)	14.044	< 0.001					
Previous cardiac surgery (n. %)	273(43.1)	1/1(38)	104(33.3) 51(27.1)	16.218	< 0.001					
Chronic kidney disease $(n, \%)$	112(17.0)	01(13.0)	31(27.1)	24.910	< 0.001					
Infactious and coarditis (n. %)	28(4.4)	8(1.8)	20(10.6)	24.810	0.591					
$\frac{1}{2} \frac{1}{2} \frac{1}$	20(3.1)	13(2.9)	/(3./)	0.304	0.581					
Critical presentative state (n, \mathcal{C})	405(63.5)	282(62.7)	123(65.4)	0.435	0.509					
Derion anotive blood logg/(mL log ⁻¹ Md[LOB])	63(9.9)	16(3.6)	47(25)	68.519	< 0.001					
Line setest/(mL less M/[IQR])	5.43(3.838,7.143)	5.06(3.53,6.56)	6.87(4.82,9.49)	-7.554	< 0.001					
Unne output/(mL·kg·, $Ma[IQK])$	13.28(7.343,22.008)	15.23(9.36,24.55)	8.94(3.84,14.27)	8.109	< 0.001					
Emergency (n, %)	34(5.3)	6(1.3)	28(14.9)	48.330	< 0.001					
Anestnesia time/(n, $Ma[IQR])$	5.5(4.75,6.58)	5.46(4.67,6.33)	6.16(4.9,7.52)	-4.466	< 0.001					
Operation time/(n, $Ma[IQR])$	4.67(3.917,5.67)	4.5(3.83,5.40)	5.33(4.17,6.67)	-5.321	< 0.001					
pRBC transfusion during surgery/(U, <i>Ma</i> [IQR])	2(0,4)	2(0,3.75)	4(2,6)	-7.597	< 0.001					
PL1 transfusion during surgery/(U, $Md[IQR]$)	0(0,1)	0(0,0)	0(0,1)	-5.577	< 0.001					
PR interval/(ms, <i>Ma</i> [IQR])	152(110,172)	154(124,170)	150(0,176)	0.804	0.418					
QRS duration/(ms, <i>Ma</i> [IQR])	96(86,106)	96(86,106)	96(86,108.5)	-0.578	0.563					
Q1c interval/(ms, <i>Md</i> [IQR])	437(415,456)	434(414,453)	442.5(417,460)	-2.600	0.009					
Digoxin $(n, \%)$	204(32.0)	137(30.4)	67(35.6)	1.645	0.200					
β -block (n, %)	375(58.8)	249(55.3)	126(67)	7.476	0.006					
Aspirin (n, %)	127(19.9)	75(16.7)	52(27.7)	10.051	0.002					
Calcium channel blockers (n, %)	253(39.7)	166(36.9)	87(46.3)	4.883	0.027					
Statins (n, %)	174(27.3)	115(25.6)	59(31.4)	2.270	0.132					
Insulin (n, %)	62(9.7)	30(6.7)	32(17)	16.205	< 0.001					
Oral hypoglycemic agents (n, %)	101(15.8)	67(14.9)	34(18.1)	1.017	0.313					
Hemoglobin/(g·L ⁻¹ , $Md[IQR]$)	133.83(120,146)	136.5(123.25,148)	126.5(108,137)	6.503	< 0.001					
Red blood cell count/(L^{-1} , ×10 ¹² , <i>Md</i> [IQR])	4.35(3.96,4.74)	4.43(4.03,4.79)	4.09(3.58,4.57)	6.128	< 0.001					
White blood cell count/(L^{-1} , ×10 ⁹ , <i>Md</i> [IQR])	6.11(5.05,7.465)	6.05(5,7.23)	6.53(5.24,8.4)	-3.075	0.002					
Platelet count/(L^{-1} , ×10 ⁹ , <i>Md</i> [IQR])	195(154,235.75)	201(163.5,240.75)	175.5(135.88,222)	4.506	< 0.001					
Hematocrit/($L \cdot L^{-1}$, <i>Md</i> [IQR])	0.39(0.35,0.418)	0.39(0.36,0.42)	0.37(0.32,0.4)	5.687	< 0.001					
APPT/(s, <i>Md</i> [IQR])	36.7(34,39.875)	36.4(33.7,38.8)	37.85(34.98,43.23)	-4.547	< 0.001					
INR/(<i>Md</i> [IQR])	1.05(0.99,1.14)	1.04(0.98,1.11)	1.1(1.01,1.24)	-5.345	< 0.001					
Creatinine clearance/(mL·min ⁻¹ , Md[IQR]	80.02(64.339,98.164)	83.13(69.4,100.1)	71.18(52.37,92.75)	5.406	< 0.001					

表 1 患者一般特点和围术期变量 Tab 1 General characteristics and perioperative variables of the patients

BMI: body mass index; NYHA: New York Heart Association; ASA: American Society of Anesthesiologists; OHA: oral hypoglycemic agents; pRBC: packed red blood cell; PLT: platelet; APPT: activated partial prothrombin time; INR: international normalized ratio; SBP: systolic blood pressure; AKI: acute kidney injury.

5.61(4.57,6.83)

6.71(5.32,9.29)

< 0.001

-6.374

5.84(4.75,7.28)

Urea nitrogen/(mg·dL⁻¹, Md[IQR])

为 0.934, 准确率为 0.927, AUC 为 0.890(95% CI: 0.762~1.000), DCA 图中的结果也说明了模型具

图 1 随机森林、支持向量机和决策树预测模型的受试者工作特征 曲线

有较好的临床运用价值。此外,所构建的模型不 仅基于术前变量,手术相关的变量也纳入分析, 以此来确保模型更符合患者的实际情况。在 SHAP变量重要性基质图中,前10个特征中一半

图 2 随机森林、支持向量机和决策树预测模型的决策曲线分析

Fig.2 Decision curve analysis for predictive models of random forest, support vector machine and decision tree

图 3 随机森林模型的前 20 变量矩阵图

Left atrial diameter=4.8 Scr=180.5 Hemoglobin=145 Ejection fraction=62 DBP=62 Qtc interval=462 Right atrial diameter=3.4 Weight of the intervention=3 图 4 SHAP 在 2 例正确预测为 AKI 和非 AKI 患者中的特征重要性度量

Fig.4 SHAP feature importance metrics for 2 patients that were correctly predicted as AKI and non-AKI

1	73
---	----

Tab. 2 Predictive performance for each model										
Machine learning model	Sensitivity	Specificity	Accuracy	AUC (95% CI)	PPV	NPV	F1 score			
Random forest	0.784	0.934	0.927	0.890(0.762-1.000)	0.279	0.990	0.388			
Support vector machine	0.698	0.927	0.952	0.846(0.704-0.981)	0.317	0.985	0.407			
Decision tree	0.721	0.709	0.711	0.772(0.725-0.819)	0.515	0.857	0.597			

表 2 各个模型的预测性能

PPV: positive predictive value; NPV: negative predictive value.

是术中特征,这意味着术中条件对心脏手术后早 期肾功能下降有重要影响。不同于先前强调了术 前条件的预测模型,本研究证明了在 CSA-AKI 手 术中反映患者急性生理反应的术中变量的价值。 CSA-AKI的病理生理学可以解释为什么术中特征 对 AKI 预测是如此至关重要。虽然 AKI 发病机制 未完全阐明,但已知肾低灌注是由低流量、低压 和血液稀释产生。此外,体外循环引起的快速核 心体温降低,出血并发症和炎症反应在 CSA-AKI 发生发展中都发挥重要作用。

在本研究中,根据 2012 年 KDIGO 标准定义 的 CSA-AKI 在术后 7 d 内的发生率为 29.5%, 其 结果与先前报道一致^[18]。CSA-AKI的发生与一系 列风险因素有关,其发生发展不仅受到年龄、性 别和合并症等人口统计特征的影响,还与手术类 型、液体超滤体积、是否体外循环等围术期因素 有关[19]。本研究不仅鉴定了与以前使用的风险评 分模型相同的几种风险因素,如术前血红蛋白、 肌酐清除率、手术时间、左心室射血分数、体质 量指数和高血压^[20-23],还鉴别了被传统评分模型 忽视的重要风险因素,如术中尿液输出量、失血 量、术中使用血管活性药、左心房直径和手术权 重。鉴于此,机器学习开辟了新的生物标志物的 可能性, 这有利于理解疾病发病机制和指定新的 干预路径。值得注意的是,一些众所周知的风险 因素在本研究中的前20个特征中没有排名,如手 术类型和成分血的输注。

肌酐清除率和血红蛋白被确定为 CSA-AKI 分 类的最重要因素。血红蛋白水平与 AKI 之间的关 系已被广泛研究,低水平的血红蛋白和贫血的存 在成为 AKI 的独立危险因素 [24]。既往的研究表 明,血红蛋白与 AKI 呈负相关,即术前血红蛋白 水平越低,越容易患 AKI^[25-26]。本研究中 AKI 组 较非 AKI 组的血红蛋白水平更低也验证了这一结 论。此外,既往报道肌酐水平较高的患者更易发 生 AKI^[27]。此结论也与本研究结果一致。

本研究也有一定的局限性: 1)研究分析仅使 用单中心数据, 病例相对较少。机器学习算法的 性能可能因具有不同分布的患者特征和不同机构 的较大数据集而不同。因此,需要外部验证以防 止过度拟合。2)由于数据集的建立是由医师手动 实现的,因此某些隐藏的变量关系可能由于医师 认知的局限性而丢失。3)目前尚不清楚所构建的 风险预测模型在临床实践中是否可以转化为患者 的实际临床益处,因此尚需要前瞻性、多中心研 究来评估。

综上所述,我们建立了心脏手术后预测 AKI 的机器学习方法,可用于手术后个体罹患 AKI 的 风险预测。本研究结果显示术中变量对于 AKI 预 测至关重要。随着研究的不断深入,基于机器学 习的患者实时监测系统或将辅助临床医师提供有 价值的临床决策支持,并减少 CSA-AKI 相关的死 亡率和发生率。其不仅可以揭示预测因子之间的 复杂关系,而且还评估术后患者 CSA-AKI 事件的 发生风险。它将促进医生识别风险较高的患者, 采取保护策略,从而改善患者的预后。

利益冲突声明:无。

参考文献

- Thiele RH, Isbell JM, Rosner MH. AKI associated with cardiac 1 surgery [J] . Clin J Am Soc Nephrol, 2015, 10 (3): 500-514.
- 2 Howell NJ, Freemantle N, Bonser RS, et al. Subtle changes in renal function are associated with differences in late survival following adult cardiac surgery [J]. Eur J Cardiothorac Surg, 2012, 41 (4) : e38-e42.
- Jiang WH, Xu JR, Shen B, et al. Validation of four prediction 3 scores for cardiac surgery-associated acute kidney injury in Chinese patients [J]. Braz J Cardiovasc Surg, 2017, 32 (6): 481-486.
- 4 Guo T, Fang Z, Yang GF, et al. Machine learning models for predicting in-hospital mortality in acute aortic dissection patients [J] . Front Cardiovasc Med, 2021, 8: 727773.
- 5 齐霜,徐浩然,胡婕,等.基于机器学习的重症监护病房脓毒 症患者早期死亡风险预测模型 [J]. 解放军医学院学报, 2021, 42 (2): 150-155.
- Cofre-Martel S, Lopez Droguett E, Modarres M. Big machinery 6 data preprocessing methodology for data-driven models in prognostics and health management [J]. Sensors (Basel), 2021, 21 (20): 6841.
- 7 宋亚男,武惠韬,应俊,等.基于机器学习算法探讨糖尿病视 网膜病变的风险因素 [J]. 解放军医学院学报, 2021, 42 (9): 906-912.
- 史斌,王建立.人工智能对肝癌患者预后预测的研究进展[J]. 8 解放军医学院学报, 2020, 41 (9): 922-925.

- 9 Li Q, Fan QL, Han QX, et al. Machine learning in nephrology: scratching the surface [J]. Chin Med J (Engl), 2020 (6): 687-698.
- 10 Voglis S, Van Niftrik CHB, Staartjes VE, et al. Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery [J]. Pituitary, 2020, 23 (5): 543-551.
- Kendale S, Kulkarni P, Rosenberg AD, et al. Supervised machine-learning predictive analytics for prediction of postinduction hypotension [J]. Anesthesiology, 2018, 129 (4): 675-688.
- 12 Lee HC, Ryu HG, Chung EJ, et al. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil: a deep learning approach [J]. Anesthesiology, 2018, 128 (3): 492-501.
- 13 Hever G, Cohen L, O'Connor MF, et al. Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU [J]. J Clin Monit Comput, 2020, 34 (2): 339-352.
- 14 Lee S, Mohr NM, Street WN, et al. Machine learning in relation to emergency medicine clinical and operational scenarios: an overview [J]. West J Emerg Med, 2019, 20 (2): 219-227.
- 15 Glaser JI, Benjamin AS, Farhoodi R, et al. The roles of supervised machine learning in systems neuroscience [J]. Prog Neurobiol, 2019, 175: 126-137.
- 16 Song X, Waitman LR, Hu Y, et al. The Impact of Medical Big Data Anonymization on Early Acute Kidney Injury Risk Prediction [J/OL] . http://www.ncbi.nlm.nih.gov/pmc/articles/ pmc7233037.
- 17 Lee HC, Yoon HK, Nam K, et al. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery [J]. J Clin Med, 2018, 7 (10): E322.
- 18 Xie XC, Wan X, Ji XB, et al. Reassessment of acute kidney injury after cardiac surgery: a retrospective study [J]. Intern Med, 2017, 56 (3): 275-282.

- 19 Nalesso F, Cattarin L, Gobbi L, et al. Evaluating nephrocheck® as a predictive tool for acute kidney injury [J]. Int J Nephrol Renovasc Dis, 2020, 13: 85-96.
- 20 Brown JR, Cochran RP, Leavitt BJ, et al. Multivariable prediction of renal insufficiency developing after cardiac surgery [J]. Circulation, 2007, 116 (11 Suppl): 1139-I143.
- 21 Chang CH, Lee CC, Chen SW, et al. Predicting acute kidney injury following mitral valve repair [J]. Int J Med Sci, 2016, 13 (1): 19-24.
- 22 Che ML, Wang XD, Liu S, et al. A clinical score to predict severe acute kidney injury in Chinese patients after cardiac surgery [J]. Nephron, 2019, 142 (4)): 291-300.
- 23 Huen SC, Parikh CR. Predicting acute kidney injury after cardiac surgery: a systematic review [J]. Ann Thorac Surg, 2012, 93 (1): 337-347.
- 24 Kim-Campbell N, Gretchen C, Callaway C, et al. Cell-free plasma hemoglobin and male gender are risk factors for acute kidney injury in low risk children undergoing cardiopulmonary bypass [J]. Crit Care Med, 2017, 45 (11): e1123-e1130.
- 25 Bellomo R, Mårtensson J, Kaukonen KM, et al. Epidemiology of RBC transfusions in patients with severe acute kidney injury: analysis from the randomized evaluation of normal versus augmented level study [J]. Crit Care Med, 2016, 44 (5): 892-900.
- 26 Shacham Y, Gal-Oz A, Leshem-Rubinow E, et al. Association of admission hemoglobin levels and acute kidney injury among myocardial infarction patients treated with primary percutaneous intervention [J]. Can J Cardiol, 2015, 31 (1): 50-55.
- 27 Lepère V, Duceau B, Lebreton G, et al. Risk factors for developing severe acute kidney injury in adult patients with refractory postcardiotomy cardiogenic shock receiving venoarterial extracorporeal membrane oxygenation [J]. Crit Care Med, 2020, 48 (8): e715-e721.

(上接 156 页)

- 15 Young SW, Saffi M, Spangehl MJ, et al. Unexplained pain following total knee arthroplasty: Is rotational malalignment the problem? [J]. Knee, 2018, 25 (2): 329-334.
- 16 Thielemann FW, Konstantinids L, Herget GW, et al. Effect of rotational component alignment on clinical outcome 5 to 7 years after TKA with the Columbus knee system [J]. Orthopedics, 2016, 39 (3 Suppl): S50-S55.
- 17 Nam JH, Koh YG, Kang K, et al. The posterior cortical axis as an alternative reference for femoral component placement in total knee arthroplasty [J]. J Orthop Surg Res, 2020, 15 (1): 603.
- 18 Nam JH, Koh YG, Kim PS, et al. Effect of the presence of the articular cartilage on the femoral component rotation in total knee arthroplasty in female and Varus osteoarthritis knees [J]. J Orthop Surg Res, 2020, 15 (1): 499.
- 19 Skowronek P, Arnold M, Starke C, et al. Intra- and postoperative assessment of femoral component rotation in total knee arthroplasty: an EKA knee expert group clinical review [J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29 (3): 772-782.
- 20 Olcott CW, Scott RD. A comparison of 4 intraoperative methods

to determine femoral component rotation during total knee arthroplasty [J]. J Arthroplasty, 2000, 15 (1): 22-26.

- 21 Asano T, Akagi M, Nakamura T. The functional flexionextension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique [J]. J Arthroplasty, 2005, 20 (8): 1060-1067.
- 22 Franceschini V, Nodzo SR, Gonzalez Della Valle A. Femoral component rotation in total knee arthroplasty: a comparison between transepicondylar axis and posterior condylar line referencing [J]. J Arthroplasty, 2016, 31 (12): 2917-2921.
- 23 Kinzel V, Ledger M, Shakespeare D. Can the epicondylar axis be defined accurately in total knee arthroplasty? [J]. Knee, 2005, 12 (4): 293-296.
- 24 Pagnano MW, Hanssen AD. Varus tibial joint line obliquity: a potential cause of femoral component malrotation [J]. Clin Orthop Relat Res, 2001 (392): 68-74.
- 25 吴厦, 蔡谞, 缪力, 等. 膝关节置换术中内侧副韧带浅层贴骨 剥离松解的效用分析 [J]. 解放军医学院学报, 2015, 36(7): 710-712.