王卫东. 感觉编码时空活动模式的类脑表达与计算——架构篇[J]. 解放军医学院学报, 2024, 45(7): 705-713. DOI: 10.12435/j.issn.2095-5227.2024.110
引用本文: 王卫东. 感觉编码时空活动模式的类脑表达与计算——架构篇[J]. 解放军医学院学报, 2024, 45(7): 705-713. DOI: 10.12435/j.issn.2095-5227.2024.110
WANG Weidong. Brain-inspired representation and computation for similarity structure from spatiotemporal patterns in sensory coding : Architecture[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2024, 45(7): 705-713. DOI: 10.12435/j.issn.2095-5227.2024.110
Citation: WANG Weidong. Brain-inspired representation and computation for similarity structure from spatiotemporal patterns in sensory coding : Architecture[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2024, 45(7): 705-713. DOI: 10.12435/j.issn.2095-5227.2024.110

感觉编码时空活动模式的类脑表达与计算——架构篇

Brain-inspired representation and computation for similarity structure from spatiotemporal patterns in sensory coding : Architecture

  • 摘要: 大脑如何处理随时间和空间变化的感觉数据流,以执行复杂的认知计算和适应性行为控制,一直是脑科学和类脑技术领域的重要难题。这被称为感觉编码的表达与计算问题,其关键在于找到一种通用的方法,使大脑能够有效地学习和表达感觉数据流中的相似性或不变性,并将这些学习结果应用于认知计算、行为控制以及感知觉和意识形成。然而,现有的实验手段、理论框架和方法体系在揭示大脑生物学结构与功能的复杂关系,以及信息论上类脑智能表达与计算的通用机制方面仍面临挑战,更难以深入阐述这两者之间的内在联系。本文基于视网膜 - 外侧膝状体 - 视皮质轴神经编码的生理机制,提出构建一种新型的类脑智能单元模型架构,该架构专注于表达与计算感觉数据流的时空活动模式的相似性或不变性。它不仅模拟了人类大脑外周神经系统对信息的压缩表达、丘脑系统的有序分离与拼接、皮质的独立稀疏编码以及自组织映射计算等复杂过程,还模拟了皮质脑区间折返连接振荡与相干振荡的全局编码机制。这种类脑智能单元不仅为构建大规模集成神经网络模型提供了坚实的基础,而且有助于更深入地理解大脑的表达与计算机制,为实现意识的大脑皮质连接图的全局编码提供新的视角,进而推动类脑智能的实现。

     

    Abstract: How the brain processes the flow of sensory data over time and space to perform complex cognitive computations and adaptive behaviors has long been a difficult problem in the field of brain science and brain-inspired technologies. This problem is called the expression and computation problem of sensory encoding, and the key is to find a general method to realize the similarity or invariance expression learning in sensory data flow, and effectively apply it to cognitive computing and behavior control, as well as perception and consciousness formation. However, existing experiments, theories, and methods are difficult to explain the relationship between brain structure and function with biologically complex mechanisms, the relationship between the expression and computation of brain-inspired intelligence in information theory, and the relationship between the two. On the basis of illustrating the physiological mechanism of neural coding in the passageway from retina to lateral geniculate nucleus and to visual cortex, we propose a brain-inspired intelligence unit architecture for the expression and computation of the similarity or invariance of the spatiotemporal activity pattern of sensory data flow. The architecture is similar to in the human brain’s the latent representation of peripheral nervous systems, the systematic separation and concatenation of thalamus, the computation of the independent sparse coding and self-organizing mapping of cerebral cortex, and the oscillations and their synchronizations of the re-entrant connections between cortical functional regions. This brain-inspired intelligence unit realizes a large-scale integrated neural network model, which helps to better understand the representation and computation of the brain, and contributes to the global brain topographic map coding of brain consciousness, as well as be beneficial to brain-inspired intelligence realized by large-scale integrated neural networks.

     

/

返回文章
返回