Role of tumor-associated macrophage exosomes in regulating proliferation, migration and invasion of laryngeal carcinoma cells
-
摘要:背景
肿瘤相关巨噬细胞外泌体通过传递信号分子调控肿瘤细胞的生物学行为,但在喉癌的研究中鲜有报道。
目的探讨肿瘤相关巨噬细胞外泌体对喉癌细胞增殖、迁移、侵袭能力的影响。
方法使用生物信息学方法分析头颈鳞癌与肿瘤相关巨噬细胞的关系;诱导并鉴定M0和M2型肿瘤相关巨噬细胞,采用RT-qPCR、Western blot实验对其表达的细胞表面标志物IL-10、Arginase-1 (Arg-1)、CCL-18、CD206、CD-163进行检测;提取并鉴定M0和M2型巨噬细胞分泌的外泌体(M0-exo和M2-exo),采用透射电镜法观察外泌体特有结构,纳米颗粒追踪法测定外泌体粒径,Western blot实验检测其表达的标志性蛋白HSP70;将人喉癌细胞(AMC-HN-8)分为M0-exo组和M2-exo组,其中M0-exo组为实验组,M2-exo组为对照组。采用CCK-8实验和细胞克隆形成实验检验M0-exo和M2-exo对细胞增殖能力的影响,细胞划痕实验检验M0-exo和M2-exo对单层细胞运动能力的影响,Transwell实验检验M0-exo和M2-exo在3D环境中对细胞运动能力的影响,Western blot实验检测N-钙黏蛋白、波形蛋白、E-钙黏蛋白以验证M2-exo是否对喉癌细胞的上皮间质转化进程产生影响,进而影响细胞的迁移、侵袭能力。
结果根据生物信息学分析,发现头颈鳞癌中巨噬细胞富集情况明显;分析其中免疫细胞的组成情况,发现M2型巨噬细胞占13%;培养成功的M2型巨噬细胞表达其特有的细胞表面标志物。M2-exo符合外泌体的结构和生物学特征。与M0-exo组相比,M2-exo组AMC-HN-8细胞的增殖、迁移、侵袭能力增强,差异均有统计学意义(P<0.05)。
结论M2型肿瘤相关巨噬细胞外泌体可促进喉癌细胞的增殖、迁移和侵袭能力。
Abstract:BackgroundTumor-associated macrophage (TAM) exosomes regulate the biological behavior of tumor cells by transferring certain signaling molecules. These biovesicles have been extensively studied in breast cancer and colorectal cancer, but there is limited research on their role in laryngeal cancer.
ObjectiveTo investigate the effects of TAM exosomes on the proliferation, migration, and invasion capacity of laryngeal cancer cells.
MethodsBioinformatics analysis was employed to explore the relationship between head and neck squamous cell carcinoma and TAMs, M0 and M2 TAMs were induced and characterized using RT-qPCR and Western blotting. The exosomes secreted by M0 and M2 macrophages (M0-exo and M2-exo) were extracted and characterized using transmission electron microscopy, nanoparticle tracking, and Western blotting. Human laryngeal cancer cells (AMC-HN-8) were divided into M0-exo and M2-exo groups, and the effects on cell proliferation were assessed using the CCK-8 assay and cell cloning formation assay. The impact on the motility of monolayer cells was evaluated using the cell scratch assay, while the 3D cell motility was assessed using the Transwell assay. The effect of M2-exo on the epithelial-mesenchymal transition (EMT) process of laryngeal cancer cells, and consequently on their migration and invasion capacity, was validated by Western blotting.
ResultsBioinformatics analysis revealed a significant enrichment of macrophages in head and neck squamous cell carcinoma. The composition of immune cells within the tumor showed a higher expression proportion of M2 TAMs. Cultured M2 TAMs expressed characteristic cell surface markers. M2-exo exhibited the structural and biological features of exosomes. Compared to the M0-exo group, the M2-exo group showed significantly increased proliferation, migration, and invasion capacities of AMC-HN-8 cells, with statistically significant data.
ConclusionM2 TAM exosomes can promote the proliferation, migration, and invasion capacities of laryngeal cancer cells.
-
-
表 1 引物序列
Table 1 Primer Sequence
目的基因 引物序列(5’-3’) GAPDH F:CCATGGGGAAGGTGAAGGTC
R:GAAGGGGTCATTGATGGCAACIL-10 F:TCTCCGAGATGCCTTCAGCAGA
R:TCAGACAAGGCTTGGCAACCCACCL-18 F:GTTGACTATTCTGAAACCAGCCC
R:GTCGCTGATGTATTTCTGGACCCCD206 F:AGCCAACACCAGCTCCTCAAGA
R:CAAAACGCTCGCGCATTGTCCACD163 F:CCAGAAGGAACTTGTAGCCACAG
R:CAGGCACCAAGCGTTTTGAGCT -
[1] Shaath H,Vishnubalaji R,Elango R,et al. Long non-coding RNA and RNA-binding protein interactions in cancer:experimental and machine learning approaches[J]. Semin Cancer Biol,2022,86(Pt 3):325-345.
[2] Johnson DE,Burtness B,Leemans CR,et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers,2020,6(1): 92. doi: 10.1038/s41572-020-00224-3
[3] Bánfai B,Jia H,Khatun J,et al. Long noncoding RNAs are rarely translated in two human cell lines[J]. Genome Res,2012,22(9): 1646-1657. doi: 10.1101/gr.134767.111
[4] Guttman M,Donaghey J,Carey BW,et al. lincRNAs act in the circuitry controlling pluripotency and differentiation[J]. Nature,2011,477(7364): 295-300. doi: 10.1038/nature10398
[5] Gao K,Zhu YN,Wang H,et al. Network pharmacology reveals the potential mechanism of Baiying Qinghou decoction in treating laryngeal squamous cell carcinoma[J]. Aging,2021,13(24): 26003-26021. doi: 10.18632/aging.203786
[6] Hrelec C. Management of laryngeal dysplasia and early invasive cancer[J]. Curr Treat Options Oncol,2021,22(10): 90. doi: 10.1007/s11864-021-00881-w
[7] Gao JP,Zhao ZX,Zhang HN,et al. Transcriptomic characterization and construction of M2 macrophage-related prognostic and immunotherapeutic signature in ovarian metastasis of gastric cancer[J]. Cancer Immunol Immunother,2023,72(5): 1121-1138. doi: 10.1007/s00262-022-03316-z
[8] Tigue ML,Loberg MA,Goettel JA,et al. Wnt signaling in the phenotype and function of tumor-associated macrophages[J]. Cancer Res,2023,83(1): 3-11. doi: 10.1158/0008-5472.CAN-22-1403
[9] Han YC,Sun JC,Yang YY,et al. TMP195 exerts antitumor effects on colorectal cancer by promoting M1 macrophages polarization[J]. Int J Biol Sci,2022,18(15): 5653-5666. doi: 10.7150/ijbs.73264
[10] Vitale I,Manic G,Coussens LM,et al. Macrophages and metabolism in the tumor microenvironment[J]. Cell Metab,2019,30(1): 36-50. doi: 10.1016/j.cmet.2019.06.001
[11] Panuganti BA,Finegersh A,Flagg M,et al. Prognostic significance of HPV status in laryngeal squamous cell carcinoma:a large-population database study[J]. Otolaryngol Head Neck Surg,2021,165(1): 113-121. doi: 10.1177/0194599820976178
[12] Wu WT,Li YJ,Feng AZ,et al. Data mining in clinical big data:the frequently used databases,steps,and methodological models[J]. Mil Med Res,2021,8(1): 44.
[13] Hussain Z,Bertran T,Finetti P,et al. Macrophages reprogramming driven by cancer-associated fibroblasts under FOLFIRINOX treatment correlates with shorter survival in pancreatic cancer[J]. Cell Commun Signal,2024,22(1): 1. doi: 10.1186/s12964-023-01388-7
[14] Chen ZG,Yang S,Zhao ZY,et al. Smart tumor cell-derived DNA nano-tree assembly for on-demand macrophages reprogramming[J]. Adv Sci,2024,11(10): e2307188. doi: 10.1002/advs.202307188
[15] Dongre A,Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol,2019,20(2): 69-84.
[16] Han QF,Li WJ,Hu KS,et al. Exosome biogenesis:machinery,regulation,and therapeutic implications in cancer[J]. Mol Cancer,2022,21(1): 207. doi: 10.1186/s12943-022-01671-0
[17] Ran ZH,Wu SB,Ma Z,et al. Advances in exosome biomarkers for cervical cancer[J]. Cancer Med,2022,11(24): 4966-4978. doi: 10.1002/cam4.4828
[18] Nafar S,Nouri N,Alipour M,et al. Exosome as a target for cancer treatment[J]. J Investig Med,2022,70(5): 1212-1218. doi: 10.1136/jim-2021-002194
[19] Huang Q,Yang JC,Zheng J,et al. Characterization of selective exosomal microRNA expression profile derived from laryngeal squamous cell carcinoma detected by next generation sequencing[J]. Oncol Rep,2018,40(5): 2584-2594.
[20] Zhao QL,Zheng XW,Guo HN,et al. Serum Exosomal miR-941 as a promising Oncogenic Biomarker for Laryngeal Squamous Cell Carcinoma[J]. J Cancer,2020,11(18): 5329-5344. doi: 10.7150/jca.45394
[21] Su CL,Jia SS,Ma ZH,et al. HMGB1 promotes lymphangiogenesis through the activation of RAGE on M2 macrophages in laryngeal squamous cell carcinoma[J/OL]. https://doi.org/10.1155/2022/4487435.
[22] Guo Y,Feng YF,Cui XH,et al. Autophagy inhibition induces the repolarisation of tumour-associated macrophages and enhances chemosensitivity of laryngeal cancer cells to cisplatin in mice[J]. Cancer Immunol Immunother,2019,68(12): 1909-1920. doi: 10.1007/s00262-019-02415-8
[23] Wortzel I,Dror S,Kenific CM,et al. Exosome-mediated metastasis:communication from a distance[J]. Dev Cell,2019,49(3): 347-360. doi: 10.1016/j.devcel.2019.04.011