数字光处理成型氮化硅陶瓷牙科种植体的制备及其生物安全性的初步评价

邹蓉芳, 毕鲁南, 黄阳, 冯暄淇, 冯璐, 江小霞, 李伶, 邓斌

邹蓉芳, 毕鲁南, 黄阳, 冯暄淇, 冯璐, 江小霞, 李伶, 邓斌. 数字光处理成型氮化硅陶瓷牙科种植体的制备及其生物安全性的初步评价[J]. 解放军医学院学报, 2023, 44(4): 365-371. DOI: 10.3969/j.issn.2095-5227.2023.04.009
引用本文: 邹蓉芳, 毕鲁南, 黄阳, 冯暄淇, 冯璐, 江小霞, 李伶, 邓斌. 数字光处理成型氮化硅陶瓷牙科种植体的制备及其生物安全性的初步评价[J]. 解放军医学院学报, 2023, 44(4): 365-371. DOI: 10.3969/j.issn.2095-5227.2023.04.009
ZOU Rongfang, BI Lu'nan, HUANG Yang, FENG Xuanqi, FENG Lu, JIANG Xiaoxia, LI Ling, DENG Bin. Preparation of silicon nitride ceramic dental implant by digital light processing and preliminary evaluation of its biological safety[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2023, 44(4): 365-371. DOI: 10.3969/j.issn.2095-5227.2023.04.009
Citation: ZOU Rongfang, BI Lu'nan, HUANG Yang, FENG Xuanqi, FENG Lu, JIANG Xiaoxia, LI Ling, DENG Bin. Preparation of silicon nitride ceramic dental implant by digital light processing and preliminary evaluation of its biological safety[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2023, 44(4): 365-371. DOI: 10.3969/j.issn.2095-5227.2023.04.009

数字光处理成型氮化硅陶瓷牙科种植体的制备及其生物安全性的初步评价

基金项目: 国家自然科学基金项目(52172133)
详细信息
    作者简介:

    邹蓉芳,女,在读硕士。研究方向:口腔修复材料。Email: 842949795@qq.com

    通讯作者:

    邓斌,男,博士,副主任医师,副教授。Email: dengbin301@139.com

  • 中图分类号: R783.1

Preparation of silicon nitride ceramic dental implant by digital light processing and preliminary evaluation of its biological safety

More Information
  • 摘要:
      背景  氮化硅是一种前景广阔的生物植入材料,数字化光处理技术作为一种先进的3D打印技术,同时具备打印精度高和打印速度快的性能,目前尚缺乏数字光处理成型氮化硅作为牙科用植入材料的研究报道。
      目的  使用数字光处理技术制备氮化硅陶瓷牙科种植体,评估其微观结构和机械性能,并初步评价其浸提液对小鼠成纤维细胞L929的影响。
      方法  参考国标GB 30367-2013和GB/T 10700-2006,对数字光处理成型氮化硅陶瓷,采用三点弯曲法测试弯曲强度,单边预裂纹梁法测试断裂韧性,弯曲法测试弹性模量。应用小鼠成纤维细胞L929进行数字光处理成型氮化硅陶瓷浸提液细胞毒性、细胞增殖和细胞活力的检测。
      结果  为了匹配牙槽骨的弹性模量,设计了低弹性模量氮化硅配方体系,数字光处理成型氮化硅陶瓷弹性模量为125 GPa,弯曲强度为243 MPa,断裂韧性为2.6 MPa·m1/2。细胞毒性实验结果显示,在不同浸提液浓度培养下的L929细胞相对存活率均高于80%。活死细胞荧光染色结果显示,浸提液组与对照组活死细胞数量均无统计学差异(P>0.05)。流式结果示浸提液组增殖指数持续增加,细胞周期与对照组相比无统计学差异(P>0.05)。
      结论  数字光处理成型氮化硅陶瓷具有典型的氮化硅微观结构、良好的弹性模量和生物安全性,显示出了作为牙科种植体的临床应用潜力。
    Abstract:
      Background  Silicon nitride is a promising biological implant material. As an advanced 3D printing technology, digital light processing technology has high printing accuracy and fast printing speed. At present, there is still a lack of research reports on digital light processing of silicon nitride as dental implant materials.
      Objective  To study the preparation of silicon nitride dental ceramics by digital light processing technology, evaluate the microstructure and mechanical properties, and preliminarily evaluate its biosafety.
      Methods  According to GB 30367-2013 and GB / T 10700-2006, the bending strength, fracture toughness and elastic modulus of silicon nitride ceramic by digital light processing were tested by three-point bending method, unilateral pre-cracked beam method and bending method, respectively. The cytotoxicity, cell proliferation and cell viability of silicon nitride ceramic extract treated by digital light processing were detected by mouse fibroblast L929.
      Results   The bending strength of silicon nitride formed by digital light treatment was 243 MPa, the fracture toughness was 2.6 MPa · m 1 / 2, and the elastic modulus was 125 GPa. The results of cytotoxicity experiments showed that the relative survival rate of L929 cells cultured at different extract concentrations was greater than 80%. Fluorescence staining results of live and dead cells showed that the number of live and dead cells in the extract group had no significant difference with the control group (P>0.05). Flow cytometry results showed that the proliferation index of the extract group continued to increase, and there was no significant difference in cell cycle compared with the control group (P>0.05).
      Conclusion  Digital light processing molded dental silicon nitride ceramics have a typical porous microstructure, good elastic modulus and biosafety, demonstrating the potential for clinical application of dental implant materials.
  • 图  1   数字光处理成型氮化硅微观结构

    A:数字光处理成型氮化硅X线衍射图谱;B:数字光处理成型氮化硅扫描电镜镜下观察(a、b:氮化硅表面;c、d:氮化硅侧面)

    Figure  1.   Microstructure of silicon nitride by digital light processing

    A: XRD spectrum of digital light processing silicon nitride; B: SEM observation of digital light processing silicon nitride (a, b: silicon nitride surface SEM; c, d: silicon nitride side SEM)

    图  2   数字光处理成型氮化硅试条及力学性能

    A:数字光处理成型氮化硅试条;B:数字光处理成型氮化硅的抗弯强度、弹性模量、断裂韧性

    Figure  2.   Digital light processing for forming silicon nitride test strips and mechanical properties

    A: Digital light processing for silicon nitride test strip; B: Bending strength, elastic modulus and fracture toughness of silicon nitride formed by digital light processing

    图  3   L929细胞毒性实验结果  A:L929细胞在不同浓度浸提液作用24 h后的光镜下观察(100×);B:CCK-8检测L929细胞活力

    Figure  3.   Cytotoxicity testing results to L929 cell

    A: Microscopic observation of L929 cells treated with different concentrations of extracts for 24 h (100×); B: Cell viability of L929

    图  4   L929细胞活死细胞荧光染色观察。不同浓度浸提液组与空白对照组相比,活死细胞量无显著差异

    Figure  4.   Microscopic observation of live and dead L929 cells by fluorescence staining. There was no significant difference in the amount of live and dead cells between different concentration groups and blank control group

    图  5   流式细胞术检测L929细胞周期(第1、4、7天L929细胞周期图)

    Figure  5.   L929 cell cycle assay by flow cytometry (L929 cell cycle diagram at 1 d, 4 d, 7 d)

  • [1]

    Calvert GC,VanBuren Huffmon G 3rd,Rambo WM Jr,et al. Clinical outcomes for lumbar fusion using silicon nitride versus other biomaterials[J]. J Spine Surg,2020,6(1): 33-48. doi: 10.21037/jss.2019.12.11

    [2]

    Du XY,Lee SS,Blugan G,et al. Silicon nitride as a biomedical material:an overview[J]. Int J Mol Sci,2022,23(12): 6551. doi: 10.3390/ijms23126551

    [3]

    Sainz MA,Serena S,Belmonte M,et al. Protein adsorption and in vitro behavior of additively manufactured 3D-silicon nitride scaffolds intended for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl,2020,115: 110734. doi: 10.1016/j.msec.2020.110734

    [4]

    Ahuja N,Awad KR,Brotto M,et al. A comparative study on silicon nitride,titanium and polyether ether ketone on mouse pre-osteoblast cells[J]. Med Devices Sens,2021,4(1): e10139.

    [5]

    Zanocco M,Boschetto F,Zhu WL,et al. 3D-additive deposition of an antibacterial and osteogenic silicon nitride coating on orthopaedic titanium substrate[J]. J Mech Behav Biomed Mater,2020,103: 103557. doi: 10.1016/j.jmbbm.2019.103557

    [6]

    Zhou H,Yang SF,Wei DL,et al. Development of hydrofluoric acid-cleaned silicon nitride implants for periprosthetic infection eradication and bone regeneration enhancement[J]. Mater Sci Eng C Mater Biol Appl,2021,127: 112241. doi: 10.1016/j.msec.2021.112241

    [7]

    Wu J,Liu YJ,Zhang H,et al. Silicon nitride as a potential candidate for dental implants:Osteogenic activities and antibacterial properties[J]. J Mater Res,2021,36(9): 1866-1882. doi: 10.1557/s43578-021-00249-8

    [8]

    Liu Y,Zhan LN,He Y,et al. Stereolithographical fabrication of dense Si3N4 ceramics by slurry optimization and pressure sintering[J]. Ceram Int,2020,46(2): 2063-2071. doi: 10.1016/j.ceramint.2019.09.186

    [9]

    Galante R,Figueiredo-Pina CG,Serro AP. Additive manufacturing of ceramics for dental applications:a review[J]. Dent Mater,2019,35(6): 825-846. doi: 10.1016/j.dental.2019.02.026

    [10]

    Zhang LZ,Liu H,Yao HH,et al. Preparation,microstructure,and properties of ZrO2(3Y)/Al2O3 bioceramics for 3D printing of all-ceramic dental implants by vat photopolymerization[J]. Chin J Mech Eng Addit Manuf Front,2022,1(2): 100023.

    [11]

    Huang RJ,Jiang QG,Wu HD,et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceram Int,2019,45(4): 5158-5162. doi: 10.1016/j.ceramint.2018.11.116

    [12]

    Wu XQ,Xu CJ,Zhang ZM. Development and analysis of a high refractive index liquid phase Si3N4 slurry for mask stereolithography[J]. Ceram Int,2022,48(1): 120-129. doi: 10.1016/j.ceramint.2021.09.087

    [13]

    Shekhawat D,Singh A,Banerjee MK,et al. Bioceramic composites for orthopaedic applications:a comprehensive review of mechanical,biological,and microstructural properties[J]. Ceram Int,2021,47(3): 3013-3030. doi: 10.1016/j.ceramint.2020.09.214

    [14]

    Fiani B,Jarrah R,Shields J,et al. Enhanced biomaterials:systematic review of alternatives to supplement spine fusion including silicon nitride,bioactive glass,amino peptide bone graft,and tantalum[J]. Neurosurg Focus,2021,50(6): E10. doi: 10.3171/2021.3.FOCUS201044

    [15]

    Lee SS,Laganenka L,du XY,et al. Silicon nitride,a bioceramic for bone tissue engineering:a reinforced cryogel system with antibiofilm and osteogenic effects[J]. Front Bioeng Biotechnol,2021,9: 794586. doi: 10.3389/fbioe.2021.794586

    [16]

    Li M,Huang HL,Wu JM,et al. Preparation and properties of Si3N4 ceramics via digital light processing using Si3N4 powder coated with Al2O3-Y2O3 sintering additives[J]. Addit Manuf,2022,53: 102713.

    [17]

    Yang P, Sun Z, Huang S, et al. Digital light processing 3D printing of surface-oxidized Si3N4 coated by silane coupling agent[J/OL]. http://dx.doi.org/10.1080/21870764.2021.2009096.

    [18]

    Zou WJ,Yang P,Lin LF,et al. Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing[J]. Ceram Int,2022,48(9): 12569-12577. doi: 10.1016/j.ceramint.2022.01.124

    [19]

    Kong XP,Hu XS,Chai W. In vitro & in vivo investigation of the silicon nitride ceramic hip implant's safety and effectiveness evaluation[J]. J Orthop Surg Res,2022,17(1): 87. doi: 10.1186/s13018-021-02884-7

    [20]

    Cecen B,Topates G,Kara A,et al. Biocompatibility of silicon nitride produced via partial sintering & tape casting[J]. Ceram Int,2021,47(3): 3938-3945. doi: 10.1016/j.ceramint.2020.09.257

图(5)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  58
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 网络出版日期:  2023-04-05
  • 刊出日期:  2023-04-27

目录

    /

    返回文章
    返回