Effects of osteogenic precursor cells derived exosomes on migration and proliferation of breast cancer cells
-
摘要:
背景 乳腺癌骨转移是目前研究热点之一,骨微环境中成骨细胞可以促进肿瘤细胞存活并形成微转移,但目前鲜有成骨细胞来源的外泌体对乳腺癌作用的研究报道。 目的 探讨成骨前体细胞MC3T3-E1来源的外泌体对乳腺癌4T1和MDA-MB-231细胞迁移和增殖的影响。 方法 通过超高速离心法提取MC3T3-E1细胞来源的外泌体,透射电子显微镜、纳米颗粒跟踪分析(nanopartic tracking analysis,NTA)和Western blot方法鉴定外泌体特性;利用划痕实验和Transwell实验检测分析MC3T3-E1来源的外泌体对乳腺癌4T1和MDA-MB-231细胞迁移的影响;CCK-8法和克隆形成实验检测MC3T3-E1来源的外泌体对乳腺癌4T1和MDA-MB-231细胞增殖的影响。 结果 MC3T3-E1细胞来源的外泌体具有膜结构囊状小泡,直径分布为100 ~ 200 nm,且表达外泌体标志蛋白Alix和TSG101。CCK-8活性实验结果显示,浓度为20 μg/mL的MC3T3-E1细胞来源的外泌体不影响乳腺癌细胞的活性,30 μg/mL、50 μg/mL的外泌体能够降低乳腺癌细胞活性。划痕实验和Transwell实验结果显示,20 μg/mL外泌体能够促进乳腺癌细胞的迁移(P<0.05)。CCK-8增殖实验和细胞克隆形成实验结果显示,20 μg/mL外泌体能够促进乳腺癌细胞的增殖(P<0.05)。 结论 MC3T3-E1来源的外泌体可以促进乳腺癌细胞的迁移和增殖,这为乳腺癌骨转移的治疗提供可能的靶点和治疗策略。 -
关键词:
- 成骨前体细胞MC3T3-E1 /
- 外泌体 /
- 乳腺癌 /
- 迁移 /
- 增殖
Abstract:Background Bone metastasis of breast cancer is one of the current research hotspots. Osteoblasts in the bone microenvironment can promote the survival of tumor cells and form micrometastasis. While, there are few studies on the effect of osteoblast derived exosomes on breast cancer. Objective To investigate the effects of MC3T3-E1 exosomes on the migration and proliferation of breast cancer 4T1 and MDA-MB-231 cells. Methods Exosomes derived from MC3T3-E1 cells were extracted, transmission electron microscopy (TEM), nanopartic tracking analysis (NANOPartic tracking), NTA and Western blot were used to identify exosomes. Transwell and scratch assay were used to detect the effect of MC3T3-E1-derived exosomes on the migration of breast cancer 4T1 and MDA-MB-231 cells. The effects of MC3T3-E1 derived exosomes on the proliferation of breast cancer cells were detected by CCK-8 assay and clonogenesis assay. Results The exosomes derived from MC3T3-E1 cells were characterized by membrane-structured cystic vesicles under transmission electron microscopy. The exosomes derived from MC3T3-E1 cells were 100-200 nm in diameter and expressed exosome related proteins Alix and TSG101. CCK-8 activity test results showed that exosomes derived from MC3T3-E1 cells at a concentration of 20 μg/mL did not affect the vitality of breast cancer cells, while exosomes derived from 30 μg/mL and 50 μg/mL could reduce the vitality of breast cancer cells. Scratch test and Transwell test results showed that 20 μg/mL of exosomes could promote the migration of breast cancer cells (P<0.05). CCk-8 proliferation assay and colony formation assay showed that 20 μg/mL exosomes could promote the proliferation of breast cancer cells (P<0.05). Conclusion Exosomes derived from MC3T3-E1 can promote the migration and proliferation of breast cancer cells, which provides a potential target for therapeutic strategy on bone metastasis of breast cancer. -
Key words:
- osteogenic precursor cell MC3T3-E1 /
- exosome /
- breast cancer /
- migration /
- proliferation
-
图 3 MC3T3-E1细胞来源外泌体对乳腺癌细胞迁移能力的影响(200×)
A:划痕实验镜下观察和定量结果;B:Transwell实验镜下观察和定量结果
Figure 3. MC3T3-E1 derived exosomes on the migration of breast cancer cells (200×)
A: Observation under the microscope of the scratch test and quantitative results of the scratch test; B: Observation under the microscope of the transwell test and quantitative results of the transwell test
-
[1] El-Rashidy AA,Roether JA,Harhaus L,et al. Regenerating bone with bioactive glass scaffolds:a review of in vivo studies in bone defect models[J]. Acta Biomater,2017,62: 1-28. doi: 10.1016/j.actbio.2017.08.030 [2] Melentijevic I,Toth ML,Arnold ML,et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress[J]. Nature,2017,542(7641): 367-371. doi: 10.1038/nature21362 [3] Shao HL,Im H,Castro CM,et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev,2018,118(4): 1917-1950. doi: 10.1021/acs.chemrev.7b00534 [4] Zhang HY,Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization[J]. Nat Protoc,2019,14(4): 1027-1053. doi: 10.1038/s41596-019-0126-x [5] van Niel G,D'Angelo G,Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol,2018,19(4): 213-228. doi: 10.1038/nrm.2017.125 [6] Moloudizargari M,Abdollahi M,Asghari MH,et al. The emerging role of exosomes in multiple myeloma[J]. Blood Rev,2019,38: 100595. doi: 10.1016/j.blre.2019.100595 [7] Kang YB. Dissecting tumor-stromal interactions in breast cancer bone metastasis[J]. Endocrinol Metab (Seoul),2016,31(2): 206-212. doi: 10.3803/EnM.2016.31.2.206 [8] Peinado H,Zhang HY,Matei IR,et al. Pre-metastatic niches:organ-specific homes for metastases[J]. Nat Rev Cancer,2017,17(5): 302-317. doi: 10.1038/nrc.2017.6 [9] Johnson RW,Sowder ME,Giaccia AJ. Hypoxia and bone metastatic disease[J]. Curr Osteoporos Rep,2017,15(4): 231-238. doi: 10.1007/s11914-017-0378-8 [10] Wang H,Tian L,Liu J,et al. The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability[J]. Cancer Cell,2018,34(5): 823-839. doi: 10.1016/j.ccell.2018.10.002 [11] Zheng HQ,Bae YJ,Kasimir-Bauer S,et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy[J]. Cancer Cell,2017,32(6): 731-747. doi: 10.1016/j.ccell.2017.11.002 [12] Nishida-Aoki N,Tominaga N,Takeshita F,et al. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis[J]. Mol Ther,2017,25(1): 181-191. doi: 10.1016/j.ymthe.2016.10.009 [13] Wang H,Zhou Y,Chu TW,et al. Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs[J]. Eur Spine J,2016,25(9): 2691-2704. doi: 10.1007/s00586-016-4522-4 [14] Yuan C,Pu LQ,He ZL,et al. BNIP3/Bcl-2-mediated apoptosis induced by cyclic tensile stretch in human cartilage endplate-derived stem cells[J]. Exp Ther Med,2018,15(1): 235-241. [15] Shi Q,Qian ZY,Liu DH,et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model[J]. Front Physiol,2017,8: 904. doi: 10.3389/fphys.2017.00904 [16] Yang S,Zhu B,Yin P,et al. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration[J]. ACS Biomater Sci Eng,2020,6(3): 1590-1602. doi: 10.1021/acsbiomaterials.9b01363 [17] Zhang L,Jiao GJ,Ren SW,et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion[J]. Stem Cell Res Ther,2020,11(1): 38. doi: 10.1186/s13287-020-1562-9 [18] 张灏,赵立波,叶国栋. 外泌体研究、转化和临床应用专家共识[J]. 转化医学杂志,2018,7(6): 321-325. doi: 10.3969/j.issn.2095-3097.2018.06.001 [19] Anwar T,Arellano-Garcia C,Ropa J,et al. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis[J]. Nat Commun,2018,9(1): 2801. doi: 10.1038/s41467-018-05078-8 [20] Yan W,Wu XW,Zhou WY,et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol,2018,20(5): 597-609. doi: 10.1038/s41556-018-0083-6 [21] Holkar K,Kale V,Ingavle G. Hydrogel-assisted 3D model to investigate the osteoinductive potential of MC3T3-derived extracellular vesicles[J]. ACS Biomater Sci Eng,2021,7(6): 2687-2700. doi: 10.1021/acsbiomaterials.1c00386 [22] Kaplan RN,Riba RD,Zacharoulis S,et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature,2005,438(7069): 820-827. doi: 10.1038/nature04186 [23] Wang SH,Su XD,Xu MQ,et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway[J]. Stem Cell Res Ther,2019,10(1): 117. doi: 10.1186/s13287-019-1220-2 [24] Yuan X,Qian N,Ling S,et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells[J]. Theranostics,2021,11(3): 1429-1445. doi: 10.7150/thno.45351 [25] Wu Q,Li JJ,Li ZY,et al. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression[J]. J Exp Clin Cancer Res,2019,38(1): 223. doi: 10.1186/s13046-019-1210-3 [26] Shayan G,Srivastava R,Li J,et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer[J]. Oncoimmunology,2017,6(1): e1261779. doi: 10.1080/2162402X.2016.1261779 [27] Bosukonda A,Carlson WD. Harnessing the BMP signaling pathway to control the formation of cancer stem cells by effects on epithelial-to-mesenchymal transition[J]. Biochem Soc Trans,2017,45(1): 223-228. doi: 10.1042/BST20160177 [28] Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo[J]. Biochem Soc Trans, 2017, 45(1): 27-36. [29] Chen MH,Cai FF,Zha DL,et al. Astragalin-induced cell death is caspase-dependent and enhances the susceptibility of lung cancer cells to tumor necrosis factor by inhibiting the NF-кB pathway[J]. Oncotarget,2017,8(16): 26941-26958. doi: 10.18632/oncotarget.15264 [30] Chen QZ,Li Y,Shao Y,et al. TGF-β1/PTEN/PI3K signaling plays a critical role in the anti-proliferation effect of tetrandrine in human colon cancer cells[J]. Int J Oncol,2017,50(3): 1011-1021. doi: 10.3892/ijo.2017.3875 [31] Lu D,Yao QY,Zhan C,et al. microRNA-146a promote cell migration and invasion in human colorectal cancer via carboxypeptidase M/src-FAK pathway[J]. Oncotarget,2017,8(14): 22674-22684. doi: 10.18632/oncotarget.15158 [32] Wada M,Canals D,Adada M,et al. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment[J]. Oncogene,2017,36(47): 6649-6657. doi: 10.1038/onc.2017.274 [33] Wen SY,Hou YX,Fu LX,et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling[J]. Cancer Lett,2019,442: 320-332. doi: 10.1016/j.canlet.2018.10.015 [34] Fang T, Lv H, Lv G, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer[J]. Nat Commun, 2018, 9(1): 191. [35] Chen H,Wang X,Guo F,et al. Impact of p38γ mitogen-activated protein kinase (MAPK) on MDA-MB-231 breast cancer cells using metabolomic approach[J]. Int J Biochem Cell Biol,2019,107: 6-13. doi: 10.1016/j.biocel.2018.11.002 [36] Croset M,Kan C,Clézardin P. Tumour-derived miRNAs and bone metastasis[J]. Bonekey Rep,2015,4: 688. [37] Song HY,Li XQ,Zhao ZC,et al. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes[J]. Nano Lett,2019,19(5): 3040-3048. doi: 10.1021/acs.nanolett.9b00287 [38] Alečković M,Kang YB. Regulation of cancer metastasis by cell-free miRNAs[J]. Biochim Biophys Acta,2015,1855(1): 24-42. [39] Ell B,Mercatali L,Ibrahim T,et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis[J]. Cancer Cell,2013,24(4): 542-556. doi: 10.1016/j.ccr.2013.09.008 [40] Xue JQ,Du RK,Ling SK,et al. Osteoblast derived exosomes alleviate radiation- induced hematopoietic injury[J]. Front Bioeng Biotechnol,2022,10: 850303. doi: 10.3389/fbioe.2022.850303 [41] Jiang Z,Zhou XJ,Han LL,et al. miR-21 targets long noncoding RNA PCAT29 to promote cell proliferation in neuroblastoma[J]. Crit Rev Eukaryot Gene Expr,2022,32(8): 1-8. doi: 10.1615/CritRevEukaryotGeneExpr.2022042471 [42] Wang H,Yu C,Gao X,et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells[J]. Cancer Cell,2015,27(2): 193-210. doi: 10.1016/j.ccell.2014.11.017 [43] Lv CX,Duan H,Wang S,et al. Exosomes derived from human umbilical cord mesenchymal stem cells promote proliferation of allogeneic endometrial stromal cells[J]. Reprod Sci,2020,27(6): 1372-1381. doi: 10.1007/s43032-020-00165-y [44] 张静,易阳艳. 干细胞外泌体生物学功能及临床应用前景[J]. 中国美容医学,2017,26(4): 136-140. [45] Liang L,Li XF,Li DP,et al. The characteristics of stem cells in human degenerative intervertebral disc[J]. Medicine (Baltimore),2017,96(25): e7178. -