留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成骨前体细胞来源的外泌体对乳腺癌细胞迁移和增殖影响的研究

阳琴娜 元欣欣 杜锐凯 厉建伟 李英贤 千年松

阳琴娜, 元欣欣, 杜锐凯, 厉建伟, 李英贤, 千年松. 成骨前体细胞来源的外泌体对乳腺癌细胞迁移和增殖影响的研究[J]. 解放军医学院学报, 2023, 44(4): 388-395, 428. doi: 10.3969/j.issn.2095-5227.2023.04.012
引用本文: 阳琴娜, 元欣欣, 杜锐凯, 厉建伟, 李英贤, 千年松. 成骨前体细胞来源的外泌体对乳腺癌细胞迁移和增殖影响的研究[J]. 解放军医学院学报, 2023, 44(4): 388-395, 428. doi: 10.3969/j.issn.2095-5227.2023.04.012
YANG Qinna, YUAN Xinxin, DU Ruikai, LI Jianwei, LI Yingxian, QIAN Niansong. Effects of osteogenic precursor cells derived exosomes on migration and proliferation of breast cancer cells[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2023, 44(4): 388-395, 428. doi: 10.3969/j.issn.2095-5227.2023.04.012
Citation: YANG Qinna, YUAN Xinxin, DU Ruikai, LI Jianwei, LI Yingxian, QIAN Niansong. Effects of osteogenic precursor cells derived exosomes on migration and proliferation of breast cancer cells[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2023, 44(4): 388-395, 428. doi: 10.3969/j.issn.2095-5227.2023.04.012

成骨前体细胞来源的外泌体对乳腺癌细胞迁移和增殖影响的研究

doi: 10.3969/j.issn.2095-5227.2023.04.012
基金项目: 军委后勤保障部卫生局军队医学科技青年培育计划拔尖项目(2020NPY112);海南省重点研发项目(ZDYF2023SHFZ117)
详细信息
    作者简介:

    阳琴娜,女,在读硕士。Email: cheernanayang@163.com

    通讯作者:

    千年松,博士,副主任医师,副教授,科室主任。Email: 18701317301@qq.com

  • 中图分类号: R329.2

Effects of osteogenic precursor cells derived exosomes on migration and proliferation of breast cancer cells

More Information
  • 摘要:   背景  乳腺癌骨转移是目前研究热点之一,骨微环境中成骨细胞可以促进肿瘤细胞存活并形成微转移,但目前鲜有成骨细胞来源的外泌体对乳腺癌作用的研究报道。  目的  探讨成骨前体细胞MC3T3-E1来源的外泌体对乳腺癌4T1和MDA-MB-231细胞迁移和增殖的影响。  方法  通过超高速离心法提取MC3T3-E1细胞来源的外泌体,透射电子显微镜、纳米颗粒跟踪分析(nanopartic tracking analysis,NTA)和Western blot方法鉴定外泌体特性;利用划痕实验和Transwell实验检测分析MC3T3-E1来源的外泌体对乳腺癌4T1和MDA-MB-231细胞迁移的影响;CCK-8法和克隆形成实验检测MC3T3-E1来源的外泌体对乳腺癌4T1和MDA-MB-231细胞增殖的影响。  结果  MC3T3-E1细胞来源的外泌体具有膜结构囊状小泡,直径分布为100 ~ 200 nm,且表达外泌体标志蛋白Alix和TSG101。CCK-8活性实验结果显示,浓度为20 μg/mL的MC3T3-E1细胞来源的外泌体不影响乳腺癌细胞的活性,30 μg/mL、50 μg/mL的外泌体能够降低乳腺癌细胞活性。划痕实验和Transwell实验结果显示,20 μg/mL外泌体能够促进乳腺癌细胞的迁移(P<0.05)。CCK-8增殖实验和细胞克隆形成实验结果显示,20 μg/mL外泌体能够促进乳腺癌细胞的增殖(P<0.05)。  结论   MC3T3-E1来源的外泌体可以促进乳腺癌细胞的迁移和增殖,这为乳腺癌骨转移的治疗提供可能的靶点和治疗策略。

     

  • 图  1  外泌体纯度鉴定

    A: 透射电子显微镜下结果;B:纳米颗粒跟踪分析结果;C:外泌体相关蛋白鉴定;D:外泌体相关蛋白灰度分析

    Figure  1.  Identification of exosomes

    A: TEM image; B:NTA results; C: Identification of exosomes related proteins; D: Gray level analysis of exosomes related proteins

    图  2  MC3T3-E1细胞来源外泌体对乳腺癌细胞活性的影响

    A:4T1细胞CCK-8活性实验定量结果;B:MDA-MB-231细胞CCK-8活性实验定量结果

    Figure  2.  MC3T3-E1 derived exosomes on the viability of breast cancer cells

    A: Quantitative results of CCK-8 activity assay in 4T1 cells; B: Quantitative results of CCK-8 activity assay in MDA-MB-231 cells

    图  3  MC3T3-E1细胞来源外泌体对乳腺癌细胞迁移能力的影响(200×)

    A:划痕实验镜下观察和定量结果;B:Transwell实验镜下观察和定量结果

    Figure  3.  MC3T3-E1 derived exosomes on the migration of breast cancer cells (200×)

    A: Observation under the microscope of the scratch test and quantitative results of the scratch test; B: Observation under the microscope of the transwell test and quantitative results of the transwell test

    图  4  MC3T3-E1细胞来源外泌体对乳腺癌细胞增殖能力的影响

    A:CCK-8增殖实验定量结果;B:克隆形成实验和定量结果

    Figure  4.  Effecf on MC3T3-E1 derived exosomes on the proliferation of breast cancer cells

    A: Quantitative results of CCK-8 proliferation experiment; B: Colony formation assay and quantitative results

  • [1] El-Rashidy AA,Roether JA,Harhaus L,et al. Regenerating bone with bioactive glass scaffolds:a review of in vivo studies in bone defect models[J]. Acta Biomater,2017,62: 1-28. doi: 10.1016/j.actbio.2017.08.030
    [2] Melentijevic I,Toth ML,Arnold ML,et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress[J]. Nature,2017,542(7641): 367-371. doi: 10.1038/nature21362
    [3] Shao HL,Im H,Castro CM,et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev,2018,118(4): 1917-1950. doi: 10.1021/acs.chemrev.7b00534
    [4] Zhang HY,Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization[J]. Nat Protoc,2019,14(4): 1027-1053. doi: 10.1038/s41596-019-0126-x
    [5] van Niel G,D'Angelo G,Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol,2018,19(4): 213-228. doi: 10.1038/nrm.2017.125
    [6] Moloudizargari M,Abdollahi M,Asghari MH,et al. The emerging role of exosomes in multiple myeloma[J]. Blood Rev,2019,38: 100595. doi: 10.1016/j.blre.2019.100595
    [7] Kang YB. Dissecting tumor-stromal interactions in breast cancer bone metastasis[J]. Endocrinol Metab (Seoul),2016,31(2): 206-212. doi: 10.3803/EnM.2016.31.2.206
    [8] Peinado H,Zhang HY,Matei IR,et al. Pre-metastatic niches:organ-specific homes for metastases[J]. Nat Rev Cancer,2017,17(5): 302-317. doi: 10.1038/nrc.2017.6
    [9] Johnson RW,Sowder ME,Giaccia AJ. Hypoxia and bone metastatic disease[J]. Curr Osteoporos Rep,2017,15(4): 231-238. doi: 10.1007/s11914-017-0378-8
    [10] Wang H,Tian L,Liu J,et al. The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability[J]. Cancer Cell,2018,34(5): 823-839. doi: 10.1016/j.ccell.2018.10.002
    [11] Zheng HQ,Bae YJ,Kasimir-Bauer S,et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy[J]. Cancer Cell,2017,32(6): 731-747. doi: 10.1016/j.ccell.2017.11.002
    [12] Nishida-Aoki N,Tominaga N,Takeshita F,et al. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis[J]. Mol Ther,2017,25(1): 181-191. doi: 10.1016/j.ymthe.2016.10.009
    [13] Wang H,Zhou Y,Chu TW,et al. Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs[J]. Eur Spine J,2016,25(9): 2691-2704. doi: 10.1007/s00586-016-4522-4
    [14] Yuan C,Pu LQ,He ZL,et al. BNIP3/Bcl-2-mediated apoptosis induced by cyclic tensile stretch in human cartilage endplate-derived stem cells[J]. Exp Ther Med,2018,15(1): 235-241.
    [15] Shi Q,Qian ZY,Liu DH,et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model[J]. Front Physiol,2017,8: 904. doi: 10.3389/fphys.2017.00904
    [16] Yang S,Zhu B,Yin P,et al. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration[J]. ACS Biomater Sci Eng,2020,6(3): 1590-1602. doi: 10.1021/acsbiomaterials.9b01363
    [17] Zhang L,Jiao GJ,Ren SW,et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion[J]. Stem Cell Res Ther,2020,11(1): 38. doi: 10.1186/s13287-020-1562-9
    [18] 张灏,赵立波,叶国栋. 外泌体研究、转化和临床应用专家共识[J]. 转化医学杂志,2018,7(6): 321-325. doi: 10.3969/j.issn.2095-3097.2018.06.001
    [19] Anwar T,Arellano-Garcia C,Ropa J,et al. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis[J]. Nat Commun,2018,9(1): 2801. doi: 10.1038/s41467-018-05078-8
    [20] Yan W,Wu XW,Zhou WY,et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol,2018,20(5): 597-609. doi: 10.1038/s41556-018-0083-6
    [21] Holkar K,Kale V,Ingavle G. Hydrogel-assisted 3D model to investigate the osteoinductive potential of MC3T3-derived extracellular vesicles[J]. ACS Biomater Sci Eng,2021,7(6): 2687-2700. doi: 10.1021/acsbiomaterials.1c00386
    [22] Kaplan RN,Riba RD,Zacharoulis S,et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature,2005,438(7069): 820-827. doi: 10.1038/nature04186
    [23] Wang SH,Su XD,Xu MQ,et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway[J]. Stem Cell Res Ther,2019,10(1): 117. doi: 10.1186/s13287-019-1220-2
    [24] Yuan X,Qian N,Ling S,et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells[J]. Theranostics,2021,11(3): 1429-1445. doi: 10.7150/thno.45351
    [25] Wu Q,Li JJ,Li ZY,et al. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression[J]. J Exp Clin Cancer Res,2019,38(1): 223. doi: 10.1186/s13046-019-1210-3
    [26] Shayan G,Srivastava R,Li J,et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer[J]. Oncoimmunology,2017,6(1): e1261779. doi: 10.1080/2162402X.2016.1261779
    [27] Bosukonda A,Carlson WD. Harnessing the BMP signaling pathway to control the formation of cancer stem cells by effects on epithelial-to-mesenchymal transition[J]. Biochem Soc Trans,2017,45(1): 223-228. doi: 10.1042/BST20160177
    [28] Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo[J]. Biochem Soc Trans, 2017, 45(1): 27-36.
    [29] Chen MH,Cai FF,Zha DL,et al. Astragalin-induced cell death is caspase-dependent and enhances the susceptibility of lung cancer cells to tumor necrosis factor by inhibiting the NF-кB pathway[J]. Oncotarget,2017,8(16): 26941-26958. doi: 10.18632/oncotarget.15264
    [30] Chen QZ,Li Y,Shao Y,et al. TGF-β1/PTEN/PI3K signaling plays a critical role in the anti-proliferation effect of tetrandrine in human colon cancer cells[J]. Int J Oncol,2017,50(3): 1011-1021. doi: 10.3892/ijo.2017.3875
    [31] Lu D,Yao QY,Zhan C,et al. microRNA-146a promote cell migration and invasion in human colorectal cancer via carboxypeptidase M/src-FAK pathway[J]. Oncotarget,2017,8(14): 22674-22684. doi: 10.18632/oncotarget.15158
    [32] Wada M,Canals D,Adada M,et al. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment[J]. Oncogene,2017,36(47): 6649-6657. doi: 10.1038/onc.2017.274
    [33] Wen SY,Hou YX,Fu LX,et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling[J]. Cancer Lett,2019,442: 320-332. doi: 10.1016/j.canlet.2018.10.015
    [34] Fang T, Lv H, Lv G, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer[J]. Nat Commun, 2018, 9(1): 191.
    [35] Chen H,Wang X,Guo F,et al. Impact of p38γ mitogen-activated protein kinase (MAPK) on MDA-MB-231 breast cancer cells using metabolomic approach[J]. Int J Biochem Cell Biol,2019,107: 6-13. doi: 10.1016/j.biocel.2018.11.002
    [36] Croset M,Kan C,Clézardin P. Tumour-derived miRNAs and bone metastasis[J]. Bonekey Rep,2015,4: 688.
    [37] Song HY,Li XQ,Zhao ZC,et al. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes[J]. Nano Lett,2019,19(5): 3040-3048. doi: 10.1021/acs.nanolett.9b00287
    [38] Alečković M,Kang YB. Regulation of cancer metastasis by cell-free miRNAs[J]. Biochim Biophys Acta,2015,1855(1): 24-42.
    [39] Ell B,Mercatali L,Ibrahim T,et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis[J]. Cancer Cell,2013,24(4): 542-556. doi: 10.1016/j.ccr.2013.09.008
    [40] Xue JQ,Du RK,Ling SK,et al. Osteoblast derived exosomes alleviate radiation- induced hematopoietic injury[J]. Front Bioeng Biotechnol,2022,10: 850303. doi: 10.3389/fbioe.2022.850303
    [41] Jiang Z,Zhou XJ,Han LL,et al. miR-21 targets long noncoding RNA PCAT29 to promote cell proliferation in neuroblastoma[J]. Crit Rev Eukaryot Gene Expr,2022,32(8): 1-8. doi: 10.1615/CritRevEukaryotGeneExpr.2022042471
    [42] Wang H,Yu C,Gao X,et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells[J]. Cancer Cell,2015,27(2): 193-210. doi: 10.1016/j.ccell.2014.11.017
    [43] Lv CX,Duan H,Wang S,et al. Exosomes derived from human umbilical cord mesenchymal stem cells promote proliferation of allogeneic endometrial stromal cells[J]. Reprod Sci,2020,27(6): 1372-1381. doi: 10.1007/s43032-020-00165-y
    [44] 张静,易阳艳. 干细胞外泌体生物学功能及临床应用前景[J]. 中国美容医学,2017,26(4): 136-140.
    [45] Liang L,Li XF,Li DP,et al. The characteristics of stem cells in human degenerative intervertebral disc[J]. Medicine (Baltimore),2017,96(25): e7178.
  • 加载中
图(4)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  64
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 网络出版日期:  2023-04-03
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回