留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨桥蛋白通过PI3K/AKT/mTOR信号通路调控低氧诱导的肺动脉平滑肌细胞自噬和增殖的机制探讨

丁琦 刘川川 王泽 周锐 刘辉琦 陈辛玲 王生兰

丁琦, 刘川川, 王泽, 周锐, 刘辉琦, 陈辛玲, 王生兰. 骨桥蛋白通过PI3K/AKT/mTOR信号通路调控低氧诱导的肺动脉平滑肌细胞自噬和增殖的机制探讨[J]. 解放军医学院学报, 2023, 44(5): 533-540, 548. doi: 10.3969/j.issn.2095-5227.2023.05.015
引用本文: 丁琦, 刘川川, 王泽, 周锐, 刘辉琦, 陈辛玲, 王生兰. 骨桥蛋白通过PI3K/AKT/mTOR信号通路调控低氧诱导的肺动脉平滑肌细胞自噬和增殖的机制探讨[J]. 解放军医学院学报, 2023, 44(5): 533-540, 548. doi: 10.3969/j.issn.2095-5227.2023.05.015
DING Qi, LIU Chuanchuan, WANG Ze, ZHOU Rui, LIU Huiqi, CHEN Xinling, WANG Shenglan. OPN regulates hypoxia-induced autophagy and proliferation in pulmonary artery smooth muscle cells through PI3K/AKT/mTOR signaling pathway[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2023, 44(5): 533-540, 548. doi: 10.3969/j.issn.2095-5227.2023.05.015
Citation: DING Qi, LIU Chuanchuan, WANG Ze, ZHOU Rui, LIU Huiqi, CHEN Xinling, WANG Shenglan. OPN regulates hypoxia-induced autophagy and proliferation in pulmonary artery smooth muscle cells through PI3K/AKT/mTOR signaling pathway[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2023, 44(5): 533-540, 548. doi: 10.3969/j.issn.2095-5227.2023.05.015

骨桥蛋白通过PI3K/AKT/mTOR信号通路调控低氧诱导的肺动脉平滑肌细胞自噬和增殖的机制探讨

doi: 10.3969/j.issn.2095-5227.2023.05.015
基金项目: 国家自然科学基金项目(81860076);青海省“昆仑英才 高端创新创业人才”项目(2023)
详细信息
    作者简介:

    丁琦,女,在读硕士。研究方向:慢性高原发病机制。Email: 1244939963@qq.com

    通讯作者:

    王生兰,女,硕士,教授,教研室主任。Email: zlw6996@163.com

  • 中图分类号: R544.1

OPN regulates hypoxia-induced autophagy and proliferation in pulmonary artery smooth muscle cells through PI3K/AKT/mTOR signaling pathway

More Information
  • 摘要:   背景  骨桥蛋白(osteopontin,OPN)可参与低氧引起的血管重塑,使肺动脉压力升高。但OPN调控低氧诱导的肺动脉平滑肌细胞(pulmonary arterial smooth muscle cells,PASMCs)自噬在低氧性肺动脉高压(hypoxic pulmonary hypertension,HPH)形成中的作用机制尚不明确。  目的  探讨低氧条件下OPN对PASMCs增殖及通过PI3K/AKT/mTOR通路对PASMCs自噬的调控作用。  方法  原代分离PASMCs,采用免疫细胞化学法进行平滑肌细胞鉴定。将细胞分为常氧对照组(Normoxia)、低氧对照组(Hypoxia)、低氧 + OPN干扰空病毒组(H + OPN EV)、低氧 + OPN干扰慢病毒组(H + OPN shRNA)、低氧 + PI3K抑制剂LY294002组(H + LY)。各组分别用EdU阳性标记率法检测细胞增殖能力;Western blot法检测各组PASMCs中的OPN、PI3K、AKT、mTOR及自噬相关蛋白Beclin1、LC3B的表达;透射电镜、免疫荧光法观察各组PASMCs自噬情况。  结果  与Normoxia组相比,Hypoxia组OPN、PI3K、AKT、mTOR、Beclin1、LC3B蛋白表达量升高(P<0.05),细胞增殖能力增强(P<0.05),自噬小体数量增多,LC3B、Beclin1红色荧光强度增强(P<0.05)。与Hypoxia组相比,H + OPN EV组各项指标无统计学差异(P>0.05),而H + OPN shRNA组和H + LY组OPN、PI3K、AKT、mTOR蛋白表达量降低(P<0.05),Beclin1、LC3B蛋白表达量升高(P<0.05),细胞增殖能力减弱(P<0.05),自噬小体数量增多,LC3B、Beclin1红色荧光强度增强(P<0.05)。  结论  在低氧条件下,OPN可促进PASMCs增殖并通过PI3K/AKT/mTOR信号通路抑制PASMCs自噬。

     

  • 图  1  α-SMA免疫细胞化学染色鉴定

    Figure  1.  α-SMA Immunocytochemical staining

    图  2  各组细胞PI3K、AKT、mTOR、OPN及自噬相关蛋白表达量($\bar x \pm s $,n=4)

    aP<0.05,vs 常氧对照组;bP<0.05,vs 低氧对照组

    Figure  2.  Expression levels of PI3K, AKT, mTOR, OPN and autophagy-related proteins in each group ($\bar x \pm s $, n=4)

    aP<0.05, vs Normoxia group; bP<0.05, vs Hypoxia group

    图  3  各组细胞PI3K、AKT、mTOR、OPN及自噬相关蛋白表达量($\bar x \pm s $,n=4)

    aP<0.05,vs 常氧对照组;bP<0.05,vs 低氧对照组

    Figure  3.  Expression levels of PI3K, AKT, mTOR, OPN and autophagy-related proteins in each group ($\bar x \pm s $, n=4)

    aP<0.05, vs normoxia;bP<0.05, vs hypoxia

    图  4  细胞免疫荧光观察各组PASMCs LC3B表达情况

    aP<0.05,vs 常氧对照组;bP<0.05,vs 低氧对照组

    Figure  4.  LC3B expression of PASMCs in each group was observed by immunofluorescence

    a P <0.05, vs Normoxia group; b P <0.05, vs Hypoxia group

    图  5  细胞免疫荧光观察各组PASMCs Beclin1表达情况

    aP<0.05,vs 常氧对照组;bP<0.05,vs 低氧对照组

    Figure  5.  Beclin1 expression of PASMCs in each group was observed by immunofluorescence

    aP<0.05, vs Normoxia group; bP<0.05, vs Hypoxia group

    图  6  电镜观察各组PASMCs超微结构变化(20000×)

    N:细胞核;Mi:线粒体;RER:粗面内质网;GB:高尔基体;Atg:自噬小体

    Figure  6.  Ultrastructural changes of PASMCs in each group were observed by electron microscopy (20000×)

    N: nucleus; Mi: mitochondrion; RER: rough endoplasmic reticulum; GB: Golgi body; Atg: autophagosome

    图  7  EdU检测细胞增殖($\bar x \pm s $,n=5)

    aP<0.05,vs 常氧对照组;bP<0.05,vs 低氧对照组

    Figure  7.  Cell proliferation detected by EdU assay ($\bar x \pm s $, n=5)

    aP<0.05, vs Normoxia group; bP<0.05, vs Hypoxia group

    表  1  干扰序列

    Table  1.   Interference sequence

      名称序列 (5'-3')
    OPN干扰序列GATGTCCCTGACGGCCGAGGT
    ACCTCGGCCGTCAGGGACATC
    下载: 导出CSV
  • [1] Sun L,Lin PR,Chen Y,et al. miR-182-3p/Myadm contribute to pulmonary artery hypertension vascular remodeling via a KLF4/p21-dependent mechanism[J]. Theranostics,2020,10(12): 5581-5599. doi: 10.7150/thno.44687
    [2] Liu CL,Chen X,Guo G,et al. Effects of intermittent normoxia on chronic hypoxic pulmonary hypertension and right ventricular hypertrophy in rats[J]. High Alt Med Biol,2021,22(2): 184-192. doi: 10.1089/ham.2020.0110
    [3] Icer MA,Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin[J]. Clin Biochem,2018,59: 17-24. doi: 10.1016/j.clinbiochem.2018.07.003
    [4] Lok ZSY,Lyle AN. Osteopontin in vascular disease[J]. Arterioscler Thromb Vasc Biol,2019,39(4): 613-622. doi: 10.1161/ATVBAHA.118.311577
    [5] Lamort AS,Giopanou I,Psallidas I,et al. Osteopontin as a link between inflammation and cancer:the Thorax in the spotlight[J]. Cells,2019,8(8): 815. doi: 10.3390/cells8080815
    [6] Pei HW,Zhang HY,Tian C,et al. Proliferative vascular smooth muscle cells stimulate extracellular matrix production via osteopontin/p38 MAPK signaling pathway[J]. Cardiology,2021,146(5): 646-655. doi: 10.1159/000513143
    [7] Dong HR,Li XC,Cai MS,et al. Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension[J]. Aging (Albany NY),2021,13(10): 14234-14257. doi: 10.18632/aging.203040
    [8] Barman SA,Li XY,Haigh S,et al. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation,apoptosis,and fibrosis[J]. Am J Physiol Lung Cell Mol Physiol,2019,316(5): L784-L797. doi: 10.1152/ajplung.00186.2018
    [9] Bussotti M,Marchese G. High altitude pulmonary hypertension[J]. Cardiovasc Hematol Disord Drug Targets,2018,18(3): 187-198. doi: 10.2174/1871529X18666180518085245
    [10] Vay SU,Olschewski DN,Petereit H,et al. Osteopontin regulates proliferation,migration,and survival of astrocytes depending on their activation phenotype[J]. J Neurosci Res,2021,99(11): 2822-2843. doi: 10.1002/jnr.24954
    [11] Wohlleben G,Hauff K,Gasser M,et al. Hypoxia induces differential expression patterns of osteopontin and CD44 in colorectal carcinoma[J]. Oncol Rep,2018,39(1): 442-448.
    [12] Bellan M,Piccinino C,Tonello S,et al. Role of osteopontin as a potential biomarker of pulmonary arterial hypertension in patients with systemic sclerosis and other connective tissue diseases (CTDs)[J]. Pharmaceuticals (Basel),2021,14(5): 394. doi: 10.3390/ph14050394
    [13] Mura M,Cecchini MJ,Joseph M,et al. Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension[J]. Respirology,2019,24(11): 1104-1110. doi: 10.1111/resp.13557
    [14] Deng JY,Yang C,Wang Y,et al. Inositol pyrophosphates mediated the apoptosis induced by hypoxic injury in bone marrow-derived mesenchymal stem cells by autophagy[J]. Stem Cell Res Ther,2019,10(1): 159. doi: 10.1186/s13287-019-1256-3
    [15] Li W,Zhang LN. Regulation of ATG and autophagy initiation[J]. Adv Exp Med Biol,2019,1206: 41-65.
    [16] Chen R,Jiang MP,Li B,et al. The role of autophagy in pulmonary hypertension:a double-edge sword[J]. Apoptosis,2018,23(9/10): 459-469.
    [17] Yamanaka R,Hoshino A,Fukai K,et al. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension[J]. Am J Physiol Heart Circ Physiol,2020,319(5): H1087-H1096. doi: 10.1152/ajpheart.00314.2020
    [18] Zhai C,Shi W,Feng W,et al. Activation of AMPK prevents monocrotaline-induced pulmonary arterial hypertension by suppression of NF-κB-mediated autophagy activation[J]. Life Sci,2018,208: 87-95. doi: 10.1016/j.lfs.2018.07.018
    [19] Liu Y,Xu Y,Zhu JQ,et al. Metformin prevents progression of experimental pulmonary hypertension via inhibition of autophagy and activation of adenosine monophosphate-activated protein kinase[J]. J Vasc Res,2019,56(3): 117-128. doi: 10.1159/000498894
    [20] Sun CM,Enkhjargal B,Reis C,et al. Osteopontin-enhanced autophagy attenuates early brain injury via FAK-ERK pathway and improves long-term outcome after subarachnoid hemorrhage in rats[J]. Cells,2019,8(9): 980. doi: 10.3390/cells8090980
    [21] Lin RJ,Wu SH,Zhu D,et al. Osteopontin induces atrial fibrosis by activating Akt/GSK-3β/β-catenin pathway and suppressing autophagy[J]. Life Sci,2020,245: 117328. doi: 10.1016/j.lfs.2020.117328
    [22] Tang M,Jiang Y,Jia HY,et al. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease[J]. Artif Cells Nanomed Biotechnol,2020,48(1): 159-168. doi: 10.1080/21691401.2019.1699822
    [23] Bai RJ,Liu D,Li YS,et al. OPN inhibits autophagy through CD44,integrin and the MAPK pathway in osteoarthritic chondrocytes[J]. Front Endocrinol (Lausanne),2022,13: 919366. doi: 10.3389/fendo.2022.919366
    [24] Feng FB,Qiu HY. Effects of Artesunate on chondrocyte proliferation,apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis[J]. Biomed Pharmacother,2018,102: 1209-1220. doi: 10.1016/j.biopha.2018.03.142
    [25] 陈玲珑,武垣伶,张赛,等. 三七总皂苷通过激活PI3K/AKT/mTOR信号通路调控低氧高二氧化碳环境下大鼠PASMCs的自噬和增殖[J]. 中国病理生理杂志,2021,37(7): 1246-1251. doi: 10.3969/j.issn.1000-4718.2021.07.013
    [26] 张馨怡,刘文涛,李利娟,等. 氟通过AKT/mTOR/ULK1信号通路对破骨细胞自噬的影响[J]. 解放军医学院学报,2022,43(9): 960-965.
    [27] Peng X,Wei C,Li HZ,et al. NPS2390,a selective calcium-sensing receptor antagonist controls the phenotypic modulation of hypoxic human pulmonary arterial smooth muscle cells by regulating autophagy[J]. J Transl Int Med,2019,7(2): 59-68. doi: 10.2478/jtim-2019-0013
    [28] Zhang H,Guo M,Chen JH,et al. Osteopontin knockdown inhibits αv,β3 integrin-induced cell migration and invasion and promotes apoptosis of breast cancer cells by inducing autophagy and inactivating the PI3K/Akt/mTOR pathway[J]. Cell Physiol Biochem,2014,33(4): 991-1002. doi: 10.1159/000358670
    [29] 芮博文,颜竞,杨平珍. 细胞程序性死亡在血管平滑肌增殖中的研究进展[J]. 解放军医学院学报,2020,41(9): 930-933. doi: 10.3969/j.issn.2095-5227.2020.09.019
    [30] Guo LY,Li YB,Tian Y,et al. eIF2α promotes vascular remodeling via autophagy in monocrotaline-induced pulmonary arterial hypertension rats[J]. Drug Des Devel Ther,2019,13: 2799-2809. doi: 10.2147/DDDT.S213817
    [31] 刘琦. 葛根素通过抑制自噬对缺氧诱导的PASMCs增殖的影响[D]. 哈尔滨: 哈尔滨商业大学, 2020.
    [32] 商萍,孙帅波,刘宝华. 伞形酮通过抑制RhoA/ROCK信号通路和自噬改善慢性低氧性肺动脉高压[J]. 生理学报,2022,74(4): 555-562.
    [33] Li Y, Yang L, Dong L, et al. Crosstalk between the Akt/mTORC1 and NF-κB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs[J]. Acta Pharmacol Sin, 2019, 40(10): 1322-1333.
    [34] 王莹,王荣环,谢意. 安石榴苷通过Akt/NF-κB/Cyclin D1通路对幼龄哮喘大鼠气道平滑肌细胞增殖和凋亡的影响[J]. 武汉大学学报(医学版),2022,43(3): 376-380.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  47
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2023-03-19
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回