OPN regulates hypoxia-induced autophagy and proliferation in pulmonary artery smooth muscle cells through PI3K/AKT/mTOR signaling pathway
-
摘要:
背景 骨桥蛋白(osteopontin,OPN)可参与低氧引起的血管重塑,使肺动脉压力升高。但OPN调控低氧诱导的肺动脉平滑肌细胞(pulmonary arterial smooth muscle cells,PASMCs)自噬在低氧性肺动脉高压(hypoxic pulmonary hypertension,HPH)形成中的作用机制尚不明确。 目的 探讨低氧条件下OPN对PASMCs增殖及通过PI3K/AKT/mTOR通路对PASMCs自噬的调控作用。 方法 原代分离PASMCs,采用免疫细胞化学法进行平滑肌细胞鉴定。将细胞分为常氧对照组(Normoxia)、低氧对照组(Hypoxia)、低氧 + OPN干扰空病毒组(H + OPN EV)、低氧 + OPN干扰慢病毒组(H + OPN shRNA)、低氧 + PI3K抑制剂LY294002组(H + LY)。各组分别用EdU阳性标记率法检测细胞增殖能力;Western blot法检测各组PASMCs中的OPN、PI3K、AKT、mTOR及自噬相关蛋白Beclin1、LC3B的表达;透射电镜、免疫荧光法观察各组PASMCs自噬情况。 结果 与Normoxia组相比,Hypoxia组OPN、PI3K、AKT、mTOR、Beclin1、LC3B蛋白表达量升高(P<0.05),细胞增殖能力增强(P<0.05),自噬小体数量增多,LC3B、Beclin1红色荧光强度增强(P<0.05)。与Hypoxia组相比,H + OPN EV组各项指标无统计学差异(P>0.05),而H + OPN shRNA组和H + LY组OPN、PI3K、AKT、mTOR蛋白表达量降低(P<0.05),Beclin1、LC3B蛋白表达量升高(P<0.05),细胞增殖能力减弱(P<0.05),自噬小体数量增多,LC3B、Beclin1红色荧光强度增强(P<0.05)。 结论 在低氧条件下,OPN可促进PASMCs增殖并通过PI3K/AKT/mTOR信号通路抑制PASMCs自噬。 -
关键词:
- 低氧 /
- 骨桥蛋白 /
- 细胞自噬 /
- 细胞增殖 /
- PI3K/AKT/mTOR信号通路
Abstract:Background Osteopontin (OPN) can participate in the vascular remodeling induced by hypoxia and increase the pulmonary artery pressure. However, the mechanism of OPN regulating autophagy of hypoxic induced pulmonary artery smooth muscle cells (PASMCs) in the formation of hypoxic pulmonary hypertension (HPH) remains unclear. Objective To study the role of OPN in PASMCs proliferation and autophagy through PI3K/AKT/mTOR signaling pathway at the hypoxia condition. Methods PASMCs were isolated and smooth muscle cells were identified by immunocytochemistry. The cells were divided into Normoxia control group (Normoxia), Hypoxia control group (Hypoxia), Hypoxia + OPN interference empty virus group (H + OPN EV), Hypoxia + OPN interference lentivirus group (H + OPN shRNA), Hypoxia + PI3K inhibitor LY294002 group (H + LY). EdU positive labeling rate was used to detect cell proliferation. The expression levels of OPN, PI3K, AKT, mTOR and autophagy-related proteins Beclin1 and LC3B in PASMCs were detected by Western blot. The autophagy of PASMCs in each group was observed by transmission electron microscopy and immunofluorescence. Results Compared with the Normoxia group, the expression levels of OPN, PI3K, AKT, mTOR, Beclin1 and LC3B significantly increased in the Hypoxia group (P<0.05), the proliferation of PASMCs was enhanced (P<0.05), the number of autophagosomes increased, and the red fluorescence intensity of LC3B, Beclin1 was also enhanced (P<0.05). Compared with the Hypoxia group, all indicators in H + OPN EV group had no statistically significant difference (P>0.05), while the expression levels of OPN, PI3K, AKT and mTOR in the H + OPN shRNA group and H + LY group decreased (P<0.05), the expression levels of Beclin1 and LC3B increased (P<0.05), the proliferation of PASMCs decreased (P<0.05), the number of autophagosomes increased, and the red fluorescence intensity of LC3B, Beclin1 was enhanced (P<0.05). Conclusion Under hypoxia condition, OPN can promote the proliferation of PASMCs and inhibit autophagy in PASMCs through PI3K/AKT/mTOR signaling pathway. -
Key words:
- hypoxia /
- osteopontin /
- autophagy /
- proliferation /
- PI3K/AKT/mTOR signaling pathway
-
表 1 干扰序列
Table 1. Interference sequence
名称 序列 (5'-3') OPN干扰序列 GATGTCCCTGACGGCCGAGGT ACCTCGGCCGTCAGGGACATC -
[1] Sun L,Lin PR,Chen Y,et al. miR-182-3p/Myadm contribute to pulmonary artery hypertension vascular remodeling via a KLF4/p21-dependent mechanism[J]. Theranostics,2020,10(12): 5581-5599. doi: 10.7150/thno.44687 [2] Liu CL,Chen X,Guo G,et al. Effects of intermittent normoxia on chronic hypoxic pulmonary hypertension and right ventricular hypertrophy in rats[J]. High Alt Med Biol,2021,22(2): 184-192. doi: 10.1089/ham.2020.0110 [3] Icer MA,Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin[J]. Clin Biochem,2018,59: 17-24. doi: 10.1016/j.clinbiochem.2018.07.003 [4] Lok ZSY,Lyle AN. Osteopontin in vascular disease[J]. Arterioscler Thromb Vasc Biol,2019,39(4): 613-622. doi: 10.1161/ATVBAHA.118.311577 [5] Lamort AS,Giopanou I,Psallidas I,et al. Osteopontin as a link between inflammation and cancer:the Thorax in the spotlight[J]. Cells,2019,8(8): 815. doi: 10.3390/cells8080815 [6] Pei HW,Zhang HY,Tian C,et al. Proliferative vascular smooth muscle cells stimulate extracellular matrix production via osteopontin/p38 MAPK signaling pathway[J]. Cardiology,2021,146(5): 646-655. doi: 10.1159/000513143 [7] Dong HR,Li XC,Cai MS,et al. Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension[J]. Aging (Albany NY),2021,13(10): 14234-14257. doi: 10.18632/aging.203040 [8] Barman SA,Li XY,Haigh S,et al. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation,apoptosis,and fibrosis[J]. Am J Physiol Lung Cell Mol Physiol,2019,316(5): L784-L797. doi: 10.1152/ajplung.00186.2018 [9] Bussotti M,Marchese G. High altitude pulmonary hypertension[J]. Cardiovasc Hematol Disord Drug Targets,2018,18(3): 187-198. doi: 10.2174/1871529X18666180518085245 [10] Vay SU,Olschewski DN,Petereit H,et al. Osteopontin regulates proliferation,migration,and survival of astrocytes depending on their activation phenotype[J]. J Neurosci Res,2021,99(11): 2822-2843. doi: 10.1002/jnr.24954 [11] Wohlleben G,Hauff K,Gasser M,et al. Hypoxia induces differential expression patterns of osteopontin and CD44 in colorectal carcinoma[J]. Oncol Rep,2018,39(1): 442-448. [12] Bellan M,Piccinino C,Tonello S,et al. Role of osteopontin as a potential biomarker of pulmonary arterial hypertension in patients with systemic sclerosis and other connective tissue diseases (CTDs)[J]. Pharmaceuticals (Basel),2021,14(5): 394. doi: 10.3390/ph14050394 [13] Mura M,Cecchini MJ,Joseph M,et al. Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension[J]. Respirology,2019,24(11): 1104-1110. doi: 10.1111/resp.13557 [14] Deng JY,Yang C,Wang Y,et al. Inositol pyrophosphates mediated the apoptosis induced by hypoxic injury in bone marrow-derived mesenchymal stem cells by autophagy[J]. Stem Cell Res Ther,2019,10(1): 159. doi: 10.1186/s13287-019-1256-3 [15] Li W,Zhang LN. Regulation of ATG and autophagy initiation[J]. Adv Exp Med Biol,2019,1206: 41-65. [16] Chen R,Jiang MP,Li B,et al. The role of autophagy in pulmonary hypertension:a double-edge sword[J]. Apoptosis,2018,23(9/10): 459-469. [17] Yamanaka R,Hoshino A,Fukai K,et al. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension[J]. Am J Physiol Heart Circ Physiol,2020,319(5): H1087-H1096. doi: 10.1152/ajpheart.00314.2020 [18] Zhai C,Shi W,Feng W,et al. Activation of AMPK prevents monocrotaline-induced pulmonary arterial hypertension by suppression of NF-κB-mediated autophagy activation[J]. Life Sci,2018,208: 87-95. doi: 10.1016/j.lfs.2018.07.018 [19] Liu Y,Xu Y,Zhu JQ,et al. Metformin prevents progression of experimental pulmonary hypertension via inhibition of autophagy and activation of adenosine monophosphate-activated protein kinase[J]. J Vasc Res,2019,56(3): 117-128. doi: 10.1159/000498894 [20] Sun CM,Enkhjargal B,Reis C,et al. Osteopontin-enhanced autophagy attenuates early brain injury via FAK-ERK pathway and improves long-term outcome after subarachnoid hemorrhage in rats[J]. Cells,2019,8(9): 980. doi: 10.3390/cells8090980 [21] Lin RJ,Wu SH,Zhu D,et al. Osteopontin induces atrial fibrosis by activating Akt/GSK-3β/β-catenin pathway and suppressing autophagy[J]. Life Sci,2020,245: 117328. doi: 10.1016/j.lfs.2020.117328 [22] Tang M,Jiang Y,Jia HY,et al. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease[J]. Artif Cells Nanomed Biotechnol,2020,48(1): 159-168. doi: 10.1080/21691401.2019.1699822 [23] Bai RJ,Liu D,Li YS,et al. OPN inhibits autophagy through CD44,integrin and the MAPK pathway in osteoarthritic chondrocytes[J]. Front Endocrinol (Lausanne),2022,13: 919366. doi: 10.3389/fendo.2022.919366 [24] Feng FB,Qiu HY. Effects of Artesunate on chondrocyte proliferation,apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis[J]. Biomed Pharmacother,2018,102: 1209-1220. doi: 10.1016/j.biopha.2018.03.142 [25] 陈玲珑,武垣伶,张赛,等. 三七总皂苷通过激活PI3K/AKT/mTOR信号通路调控低氧高二氧化碳环境下大鼠PASMCs的自噬和增殖[J]. 中国病理生理杂志,2021,37(7): 1246-1251. doi: 10.3969/j.issn.1000-4718.2021.07.013 [26] 张馨怡,刘文涛,李利娟,等. 氟通过AKT/mTOR/ULK1信号通路对破骨细胞自噬的影响[J]. 解放军医学院学报,2022,43(9): 960-965. [27] Peng X,Wei C,Li HZ,et al. NPS2390,a selective calcium-sensing receptor antagonist controls the phenotypic modulation of hypoxic human pulmonary arterial smooth muscle cells by regulating autophagy[J]. J Transl Int Med,2019,7(2): 59-68. doi: 10.2478/jtim-2019-0013 [28] Zhang H,Guo M,Chen JH,et al. Osteopontin knockdown inhibits αv,β3 integrin-induced cell migration and invasion and promotes apoptosis of breast cancer cells by inducing autophagy and inactivating the PI3K/Akt/mTOR pathway[J]. Cell Physiol Biochem,2014,33(4): 991-1002. doi: 10.1159/000358670 [29] 芮博文,颜竞,杨平珍. 细胞程序性死亡在血管平滑肌增殖中的研究进展[J]. 解放军医学院学报,2020,41(9): 930-933. doi: 10.3969/j.issn.2095-5227.2020.09.019 [30] Guo LY,Li YB,Tian Y,et al. eIF2α promotes vascular remodeling via autophagy in monocrotaline-induced pulmonary arterial hypertension rats[J]. Drug Des Devel Ther,2019,13: 2799-2809. doi: 10.2147/DDDT.S213817 [31] 刘琦. 葛根素通过抑制自噬对缺氧诱导的PASMCs增殖的影响[D]. 哈尔滨: 哈尔滨商业大学, 2020. [32] 商萍,孙帅波,刘宝华. 伞形酮通过抑制RhoA/ROCK信号通路和自噬改善慢性低氧性肺动脉高压[J]. 生理学报,2022,74(4): 555-562. [33] Li Y, Yang L, Dong L, et al. Crosstalk between the Akt/mTORC1 and NF-κB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs[J]. Acta Pharmacol Sin, 2019, 40(10): 1322-1333. [34] 王莹,王荣环,谢意. 安石榴苷通过Akt/NF-κB/Cyclin D1通路对幼龄哮喘大鼠气道平滑肌细胞增殖和凋亡的影响[J]. 武汉大学学报(医学版),2022,43(3): 376-380. -