Effect and mechanism of palmatine hydrochloride mediated laser therapy on proliferation and apoptosis in oral squamous cell carcinoma CAL-17 cells
-
摘要:
背景 口腔鳞状细胞癌主要的治疗方法为手术、放疗和化疗等,总体预后不尽如人意。近年来光动力疗法(photodynamic therapy,PDT)凭借自身的优势广泛应用口腔癌治疗,其中光敏剂至关重要。因此,选择安全有效的光敏剂是取得良好光动力疗效的关键。 目的 研究盐酸巴马汀(palmatine hydrochloride,PaH)联合激光(Laser)对口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)细胞株CAL-27生长、凋亡的影响及其机制。 方法 将CAL-27细胞随机分为对照组、盐酸巴马汀(PaH)组(0 ~ 16 μmol/L)、激光(Laser)组(0 ~ 2.4 J/cm2)及盐酸巴马汀联合激光(PaH-PDT)组(PaH 2 μmol/L + Laser 2.4 J/cm2),CCK-8法检测各组细胞的生长情况,流式细胞术检测各组细胞周期分布及凋亡率,DCFH-DA探针检测细胞内活性氧(reactive oxygen species,ROS)生成,Western blot法检测各组细胞周期及凋亡相关蛋白的表达。 结果 与对照组比较,PaH组和Laser组CAL-27细胞增殖无统计学差异,PaH-PDT组CAL-27细胞增殖明显抑制,且呈药物浓度-激光强度依赖关系。在激光强度分别为1.2 J/cm2、1.8 J/cm2和2.4 J/cm2时,PaH的半数抑制浓度(IC50)分别为8.3 μmol/L、4.1 μmol/L和2.1 μmol/L。PaH-PDT诱导CAL-27细胞发生G2/M期阻滞,下调Cyclin B1和CDK1表达,上调P21和P27表达。PaH-PDT作用CAL-27细胞后,细胞凋亡率由3.4%±0.7%上升至35.17%±3.9%(P<0.05)。PaH-PDT诱导细胞内ROS生成,上调P53、Bax的表达,下调Bcl-2的表达。 结论 PaH可以作为一种新型光敏剂介导光动力疗法抑制口腔癌细胞CAL-27增殖,诱导其凋亡,其机制可能与PaH-PDT诱导细胞G2/M期阻滞和调控凋亡蛋白P53、Bax和Bcl-2的表达有关。 Abstract:Background The available treatments for oral squamous cell carcinoma mainly include surgery, radiotherapy, chemotherapy and so on, but the overall prognosis is still not satisfactory. Photodynamic therapy has been widely used in the treatment of oral cancers by its own advantages in recent years, and photosensitizer is the most important point. Therefore, the selection of a safe and effective photosensitizer is the key to achieve good results of photodynamic therapy. Objective To investigate the effects of Palmatine hydrochloride (PaH) combined laser on the growth and apoptosis of oral squamous cell carcinoma (OSCC) cell CAL-27 and its mechanism. Methods CAL-27 cells were randomly divided into control group, PaH group, Laser group and PaH combined with Photodynamic therapy (PaH-PDT) group (PaH: 2 μM + Laser: 2.4 J/cm2). CCK-8 assay was used to detect the viability of cells. Flow cytometry was used to detect each cell cycle distribution and apoptosis rate. DCFH-DA probe was used to detect intracellular reactive oxygen species (ROS) generation, and western blot was used to detect the expression of cell cycle and apoptosis related proteins. Results Compared with control group, PaH and laser alone had no significant effect on the growth of CAL-27 cells, while PaH-PDT significantly inhibited cell proliferation. When the laser intensity was 1.2 J/cm2, 1.8 J/cm2 and 2.4 J/cm2, the IC50 of PaH was 8.3 μmol/L, 4.1 μmol/L and 2.1 μmol/L, respectively. PaH-PDT increased the ratio of cells in the G2/M phase, down-regulated the expressions of Cyclin B1 and CDK1, and up-regulated the expressions of P21 and P27. After treated by PaH-PDT, the apoptosis rate increased from (3.4±0.7)% to (35.17±3.9)% (P<0.05). PaH-PDT induced intracellular ROS production, up-regulated the expression of P53 and Bax, and down-regulated Bcl-2. Reactive oxygen scavengers showed that NAC could significantly reverse the effect of PaH-PDT on apoptotic proteins.中文摘要中没看到这句 Conclusion aaPAH can be used as a new photosensitizing agent to mediate the photodynamic therapy to inhibit the proliferation of oral cancer cell CAL-27 and induce its apoptosis. The mechanism may be related to the G2/M phase arrest induced by PaH-PDT and ROS production involved in the regulation of apoptotic proteins. -
图 3 CAL-27细胞周期分析
A:流式细胞术分析对照组细胞周期分布百分比;B:流式细胞术分析PaH-PDT组细胞周期分布百分比;C:柱状图比较两组不同周期细胞百分比(aP < 0.05,vs 对照组)
Figure 3. Cell cycle analysis of CAL-27 cells
A: the percentages of cell cycle distribution of control group were analyzed using flow cytometry; B: the percentages of cell cycle distribution of PaH-PDT group were analyzed using flow cytometry; C: histogram represents the percentage of cells arrested in different phases of cell cycle (aP < 0.05, vs control)
-
[1] Ferlay J,Soerjomataram I,Dikshit R,et al. Cancer incidence and mortality worldwide:sources,methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer,2015,136(5): E359-E386. doi: 10.1002/ijc.29210 [2] Siegel RL,Miller KD,Jemal A. Cancer statistics,2017[J]. CA:A Cancer J Clin,2017,67(1): 7-30. doi: 10.3322/caac.21387 [3] Wu Q,Cao R,Chen J,et al. Screening and identification of biomarkers associated with clinicopathological parameters and prognosis in oral squamous cell carcinoma[J]. Exp Ther Med,2019,18(5): 3579-3587. [4] Chen DN,Fan NB,Mo JX,et al. Multiple primary malignancies for squamous cell carcinoma and adenocarcinoma of the esophagus[J]. J Thorac Dis,2019,11(8): 3292-3301. doi: 10.21037/jtd.2019.08.51 [5] Eckert AW,Wickenhauser C,Salins PC,et al. Correction to:Clinical relevance of the tumor microenvironment and immune escape of oral squamous cell carcinoma[J]. J Transl Med,2018,16(1): 40. doi: 10.1186/s12967-018-1407-9 [6] Chang JE,Liu Y,Lee TH,et al. Tumor size-dependent anticancer efficacy of chlorin derivatives for photodynamic therapy[J]. Int J Mol Sci,2018,19(6): E1596. doi: 10.3390/ijms19061596 [7] Liu Y,Ma XQ,Jin P,et al. Apoptosis induced by hematoporphyrin monomethyl ether combined with He-Ne laser irradiation in vitro on canine breast cancer cells[J]. Vet J,2011,188(3): 325-330. doi: 10.1016/j.tvjl.2010.05.013 [8] 朴冰,何伟,孙文兰,等. 氨基酮戊酸光动力疗法联合手术治疗皮肤基底细胞癌的疗效观察[J]. 现代肿瘤医学,2015,23(13): 1905-1907. doi: 10.3969/j.issn.1672-4992.2015.13.38 [9] 段红霞,沈玉萍,许青. 光动力治疗人乳头瘤病毒感染和宫颈上皮内瘤变的临床应用进展[J]. 现代肿瘤医学,2017,25(20): 3364-3367. doi: 10.3969/j.issn.1672-4992.2017.20.043 [10] Gu CHJ,Pang B,Wang H,et al. A review on pharmacological effects of Rhizoma Coptidis(Huang Lian)[J]. World J Integr Tradit West Med,2016,2(2): 1-5. [11] Wu J,Xiao Q,Zhang N,et al. Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells[J]. Photodiagnosis Photodyn Ther,2016,15: 53-58. doi: 10.1016/j.pdpdt.2016.05.005 [12] Wu J,Xiao QC,Zhang N,et al. Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells:Effectiveness and mechanism of action[J]. Photodiagnosis Photodyn Ther,2016,15: 133-138. doi: 10.1016/j.pdpdt.2016.07.006 [13] Chen W,Zheng R,Baade PD,et al. Cancer statistics in China,2015[J]. CA Cancer J Clin,2016,66(2): 115-132. doi: 10.3322/caac.21338 [14] Olsen CE,Weyergang A,Edwards VT,et al. Development of resistance to photodynamic therapy (PDT) in human breast cancer cells is photosensitizer-dependent:Possible mechanisms and approaches for overcoming PDT-resistance[J]. Biochem Pharmacol,2017,144: 63-77. doi: 10.1016/j.bcp.2017.08.002 [15] Kohl E,Karrer S. New developments in photodynamic therapy[J]. Hautarzt,2013,64(5): 363-369. doi: 10.1007/s00105-012-2513-x [16] 巴伟,丁香玉,杨怡,等. 5-氨基酮戊酸光动力联合重组人干扰素α-2b凝胶治疗男性尿道口尖锐湿疣[J]. 解放军医学院学报,2016,37(4): 357-359. doi: 10.3969/j.issn.2095-5227.2016.04.016 [17] 杨怡,王祎琳,丁香玉,等. 5-氨基酮戊酸光动力疗法治疗中重度痤疮疗效分析[J]. 解放军医学院学报,2014,35(5): 445-448. doi: 10.3969/j.issn.2095-5227.2014.05.014 [18] Dumont É,Monari A. Interaction of palmatine with DNA:an environmentally controlled phototherapy drug[J]. J Phys Chem B,2015,119(2): 410-419. doi: 10.1021/jp5088515 [19] Crescenzi E,Chiaviello A,Canti G,et al. Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy:Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299)[J]. Mol Cancer Ther,2006,5(3): 776-785. doi: 10.1158/1535-7163.MCT-05-0425 [20] Xu DD,Lam HM,Hoeven R,et al. Photodynamic therapy induced cell death of hormone insensitive prostate cancer PC-3 cells with autophagic characteristics[J]. Photodiagnosis Photodyn Ther,2013,10(3): 278-287. doi: 10.1016/j.pdpdt.2013.01.002 [21] Zhou M,Ni QW,Yang SY,et al. Effects of integrin-targeted photodynamic therapy on pancreatic carcinoma cell[J]. World J Gastroenterol,2013,19(39): 6559-6567. doi: 10.3748/wjg.v19.i39.6559 [22] Wang P,Li CF,Wang XB,et al. Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo[J]. Ultrason Sonochem,2015,23: 116-127. doi: 10.1016/j.ultsonch.2014.10.027 [23] Jiang Y, Leung W, Tang Q, et al. Effect of Light-Activated Hypocrellin B on the Growth and Membrane Permeability of Gram-Negative Escherichia coli Cells[J/OL]. https://doi.org/10.1155/2014/521209. -