-
摘要: 伏隔核位于腹侧纹状体,主要由中型多棘的γ-氨基丁酸(γ-aminobutyric acid,GABA)能神经元构成,根据其表达受体的不同,又细分为表达多巴胺D1受体、多巴胺D2受体、腺苷A1及A2A受体的神经元亚型。以往研究发现伏隔核参与调控奖赏、成瘾、摄食、学习及睡眠-觉醒等神经生物学行为,与皮质、中脑多巴胺能核团等有着复杂的纤维联系。新近的研究表明伏隔核在全身麻醉意识调控中也发挥重要的作用,这为全身麻醉机制研究提供了新的思路。因此,本文对伏隔核各亚型神经元及其投射通路在睡眠-觉醒和全身麻醉中的作用进行综述。Abstract: Nucleus accumben is located in the ventral striatum and is mainly composed of medium-sized polyspinous γ-aminobutyric acid (GABA) neurons. According to their different expression receptors, the neurons can be subdivided into neuronal subtypes expressing dopamine D1 receptor, dopamine D2 receptor, adenosine A1 and A2A receptor. Previous studies have found that the nucleus accumben is involved in the regulation of reward, addiction, feeding, learning, sleep-wake and other neurobiological behaviors, and has complex fibrous connections with the cortex and midbrain dopaminergic nuclei. Recent studies have shown that the nucleus accumben also plays an important role in the consciousness regulation of general anesthesia, which opens up new horizon for the mechanism of general anesthesia. Therefore, this review focuses on the role of each subtype of neurons in the nucleus accumbens and their projection pathways in sleep-wake and general anesthesia.
-
Key words:
- nucleus accumbens /
- dopamine /
- adenosine /
- sleep-wake /
- general anesthesia
-
图 1 NAc与脑内睡眠-觉醒相关核团的投射
Figure 1. Projections between NAc and sleep-wake related nuclei in the brain
BLA: basolateral nucleus of amygdale; DR: dorsal raphe nucleus; LC: locus coeruleus; LDT: laterodorsal tegmental nucleus; LH: lateral hypothalamus; LHb: lateral habenula; PFC: prefrontal cortex; PPT: pedunculopontine tegmentum; PVT: paraventricular thalamus; SNr/SNc: substantia nigra pars reticulata/compacta; Hipp: hippocampus; VLPO: preoptic area of ventral lateral hypothalamus; VP: ventral pallidum
-
[1] Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of wakefulness and sleep[J]. Neuron,2017,93(4): 747-765. doi: 10.1016/j.neuron.2017.01.014 [2] Baimel C, McGarry LM, Carter AG. The projection targets of medium spiny neurons govern cocaine-evoked synaptic plasticity in the nucleus accumbens[J]. Cell Rep,2019,28(9): 2256-2263.e3. doi: 10.1016/j.celrep.2019.07.074 [3] Castro DC, Bruchas MR. A motivational and neuropeptidergic hub: anatomical and functional diversity within the nucleus accumbens shell[J]. Neuron,2019,102(3): 529-552. doi: 10.1016/j.neuron.2019.03.003 [4] Luo YJ, Li YD, Wang L, et al. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D 1 receptors[J]. Nat Commun,2018,9(1): 1576. doi: 10.1038/s41467-018-03889-3 [5] Bao WW, Xu W, Pan GJ, et al. Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia[J]. Curr Biol,2021,31(9): 1893-1902.e5. doi: 10.1016/j.cub.2021.02.011 [6] Sneddon EA, Schuh KM, Frankel JW, et al. The contribution of medium spiny neuron subtypes in the nucleus accumbens core to compulsive-like ethanol drinking[J]. Neuropharmacology,2021,187: 108497. doi: 10.1016/j.neuropharm.2021.108497 [7] McCullough KM, Missig G, Robble MA, et al. Nucleus accumbens medium spiny neuron subtypes differentially regulate stress-associated alterations in sleep architecture[J]. Biol Psychiatry,2021,89(12): 1138-1149. doi: 10.1016/j.biopsych.2020.12.030 [8] Wei XY, Ma TF, Cheng YF, et al. Dopamine D1 or D2 receptor-expressing neurons in the central nervous system[J]. Addict Biol,2018,23(2): 569-584. doi: 10.1111/adb.12512 [9] Jones SR, O'dell SJ, Marshall JF, et al. Functional and anatomical evidence for different dopamine dynamics in the core and shell of the nucleus accumbens in slices of rat brain[J]. Synapse,1996,23(3): 224-231. doi: 10.1002/(SICI)1098-2396(199607)23:3<224::AID-SYN12>3.0.CO;2-Z [10] Eban-Rothschild A, Rothschild G, Giardino WJ, et al. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors[J]. Nat Neurosci,2016,19(10): 1356-1366. doi: 10.1038/nn.4377 [11] Gao C, Leng Y, Ma J, et al. Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus[J]. Nat Neurosci,2020,23(2): 217-228. doi: 10.1038/s41593-019-0572-3 [12] Liu CX, Liu JX, Zhou L, et al. Lateral habenula glutamatergic neurons modulate isoflurane anesthesia in mice[J]. Front Mol Neurosci,2021,14: 628996. doi: 10.3389/fnmol.2021.628996 [13] Li Z, Chen ZL, Fan GQ, et al. Cell-type-specific afferent innervation of the nucleus accumbens core and shell[J]. Front Neuroanat,2018,12: 84. doi: 10.3389/fnana.2018.00084 [14] Salgado S, Kaplitt MG. The nucleus accumbens: a comprehensive review[J]. Stereotact Funct Neurosurg,2015,93(2): 75-93. doi: 10.1159/000368279 [15] Scofield MD, Heinsbroek JA, Gipson CD, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis[J]. Pharmacol Rev,2016,68(3): 816-871. doi: 10.1124/pr.116.012484 [16] Mingote S, Amsellem A, Kempf A, et al. Dopamine-glutamate neuron projections to the nucleus accumbens medial shell and behavioral switching[J]. Neurochem Int,2019,129: 104482. doi: 10.1016/j.neuint.2019.104482 [17] Zhang Y, Gui H, Hu L, et al. Dopamine D1 receptor in the NAc shell is involved in delayed emergence from isoflurane anesthesia in aged mice[J]. Brain Behav,2021,11(1): e01913. [18] Oishi Y, Xu Q, Wang L, et al. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice[J]. Nat Commun,2017,8(1): 734. doi: 10.1038/s41467-017-00781-4 [19] Qiu MH, Liu W, Qu WM, et al. The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal[J]. PLoS One,2012,7(9): e45471. doi: 10.1371/journal.pone.0045471 [20] Qiu MH, Vetrivelan R, Fuller PM, et al. Basal Ganglia control of sleep-wake behavior and cortical activation[J]. Eur J Neurosci,2010,31(3): 499-507. doi: 10.1111/j.1460-9568.2009.07062.x [21] Gui H, Liu CX, He HF, et al. Dopaminergic projections from the ventral tegmental area to the nucleus accumbens modulate sevoflurane anesthesia in mice[J]. Front Cell Neurosci,2021,15: 671473. doi: 10.3389/fncel.2021.671473 [22] Sabine G, Olthof BMJ, Myrto S, et al. Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D1-like receptors[J]. Eur J Neurosci,2020,52(2): 2915-2930. doi: 10.1111/ejn.14665 [23] Monti JM, Jantos H. The effects of local microinjection of selective dopamine D1 and D2 receptor agonists and antagonists into the dorsal raphe nucleus on sleep and wakefulness in the rat[J]. Behav Brain Res,2018,339: 11-18. doi: 10.1016/j.bbr.2017.11.006 [24] Yuan XS, Wang L, Dong H, et al. Striatal adenosine A 2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus[J]. eLife,2017,6: e29055. doi: 10.7554/eLife.29055 [25] Lazarus M, Chen JF, Huang ZL, et al. Adenosine and Sleep[J]. Handb Exp Pharmacol,2019,253: 359-381. [26] Lazarus M, Oishi Y, Bjorness TE, et al. Gating and the need for sleep: dissociable effects of adenosine A 1 and A 2A receptors[J]. Front Neurosci,2019,13: 740. doi: 10.3389/fnins.2019.00740 [27] Peng WL, Wu ZF, Song K, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons[J]. Science,2020,369(6508): eabb0556. doi: 10.1126/science.abb0556 [28] Oishi Y, Lazarus M. The control of sleep and wakefulness by mesolimbic dopamine systems[J]. Neurosci Res,2017,118: 66-73. doi: 10.1016/j.neures.2017.04.008 [29] 孙华, 郭永馨, 张文娟, 等. 光遗传学技术在睡眠-觉醒相关神经核团及环路研究中的应用综述[J]. 解放军医学院学报,2020,41(11): 1122-1125. doi: 10.3969/j.issn.2095-5227.2020.11.014 [30] Choi DL, Davis JF, Magrisso IJ, et al. Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat[J]. Neuroscience,2012,210: 243-248. doi: 10.1016/j.neuroscience.2012.02.036 [31] Ren SC, Wang YL, Yue FG, et al. The paraventricular thalamus is a critical thalamic area for wakefulness[J]. Science,2018,362(6413): 429-434. doi: 10.1126/science.aat2512 [32] Zhang XF, Liu Y, Yang B, et al. Inactivation of the ventral pallidum by GABAA receptor agonist promotes non-rapid eye movement sleep in rats[J]. Neurochem Res,2020,45(8): 1791-1801. doi: 10.1007/s11064-020-03040-z [33] Li YD, Luo YJ, Xu W, et al. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway[J]. Mol Psychiatry,2021,26(7): 2912-2928. doi: 10.1038/s41380-020-00906-0 [34] 全普生, 边淑芳, 李德生, 等. 食欲素与神经系统疾病研究进展[J]. 解放军医学院学报,2017,38(3): 247-249. doi: 10.3969/j.issn.2095-5227.2017.03.016 [35] Moody OA, Zhang ER, Vincent KF, et al. The neural circuits underlying general anesthesia and sleep[J]. Anesth Analg,2021,132(5): 1254-1264. doi: 10.1213/ANE.0000000000005361 [36] Flores FJ, Hartnack KE, Fath AB, et al. Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness[J]. Proc Natl Acad Sci USA,2017,114(32): E6660-E6668. [37] Zhang Y, Gui H, Duan ZK, et al. Dopamine D1 receptor in the nucleus accumbens modulates the emergence from propofol anesthesia in rat[J]. Neurochem Res,2021,46(6): 1435-1446. doi: 10.1007/s11064-021-03284-3 [38] Chen L, Li S, Zhou Y, et al. Neuronal mechanisms of adenosine A 2A receptors in the loss of consciousness induced by propofol general anesthesia with functional magnetic resonance imaging[J]. J Neurochem,2021,156(6): 1020-1032. doi: 10.1111/jnc.15146 [39] Qiu GL, Wu Y, Yang ZY, et al. Dexmedetomidine activation of dopamine neurons in the ventral tegmental area attenuates the depth of sedation in mice[J]. Anesthesiology,2020,133(2): 377-392. doi: 10.1097/ALN.0000000000003347 [40] Leung LS, Luo T, Ma JY, et al. Brain areas that influence general anesthesia[J]. Prog Neurobiol,2014,122: 24-44. doi: 10.1016/j.pneurobio.2014.08.001 -