[1] |
Zhai MM,Zhu Y,Yang MY,et al. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles[J]. Adv Sci (Weinh),2020,7(19): 2001334. doi: 10.1002/advs.202001334
|
[2] |
Rohr N,Fricke K,Bergemann C,et al. Efficacy of plasma-polymerized allylamine coating of zirconia after five years[J]. J Clin Med,2020,9(9): E2776. doi: 10.3390/jcm9092776
|
[3] |
Lai YX,Li Y,Cao HJ,et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect[J]. Biomaterials,2019,197: 207-219. doi: 10.1016/j.biomaterials.2019.01.013
|
[4] |
Qiao W,Wong KHM,Shen J,et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J]. Nat Commun,2021,12(1): 2885. doi: 10.1038/s41467-021-23005-2
|
[5] |
Roguin Maor N,Alperin M,Shturman E,et al. Effect of magnesium oxide supplementation on nocturnal leg cramps:a randomized clinical trial[J]. JAMA Intern Med,2017,177(5): 617-623. doi: 10.1001/jamainternmed.2016.9261
|
[6] |
Wang W,Jia GZ,Wang Q,et al. The in vitro and in vivo biological effects and osteogenic activity of novel biodegradable porous Mg alloy scaffolds[J]. Mater Des,2020,189: 108514. doi: 10.1016/j.matdes.2020.108514
|
[7] |
Wang JL,Xu JK,Hopkins C,et al. Biodegradable magnesium-based implants in orthopedics-a general review and perspectives[J]. Adv Sci (Weinh),2020,7(8): 1902443. doi: 10.1002/advs.201902443
|
[8] |
Wang YC,Liu BY,Zhao XA,et al. Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2[J]. Nat Commun,2018,9(1): 4058. doi: 10.1038/s41467-018-06433-5
|
[9] |
Zhang YX,Lin T,Meng HY,et al. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo[J]. J Orthop Translat,2022,33: 13-23. doi: 10.1016/j.jot.2021.11.005
|
[10] |
Li FY,Chaigne-Delalande B,Kanellopoulou C,et al. Second messenger role for Mg2 + revealed by human T-cell immunodeficiency[J]. Nature,2011,475(7357): 471-476. doi: 10.1038/nature10246
|
[11] |
Zhu DH,You J,Zhao N,et al. Magnesium regulates endothelial barrier functions through TRPM7,MagT1,and S1P1[J]. Adv Sci (Weinh),2019,6(18): 1901166. doi: 10.1002/advs.201901166
|
[12] |
Zhang KY,Jia ZF,Yang BG,et al. Adaptable hydrogels mediate cofactor-assisted activation of biomarker-responsive drug delivery via positive feedback for enhanced tissue regeneration[J]. Adv Sci (Weinh),2018,5(12): 1800875. doi: 10.1002/advs.201800875
|
[13] |
Zhang YF,Xu JK,Ruan YC,et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med,2016,22(10): 1160-1169. doi: 10.1038/nm.4162
|
[14] |
Lin SH,Yang GZ,Jiang F,et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration[J]. Adv Sci (Weinh),2019,6(12): 1900209. doi: 10.1002/advs.201900209
|
[15] |
Wang R,Shi MS,Xu FY,et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection[J]. Nat Commun,2020,11(1): 4465. doi: 10.1038/s41467-020-18267-1
|
[16] |
Li JF,Li ZY,Liu XM,et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing[J]. Nat Commun,2021,12(1): 1224. doi: 10.1038/s41467-021-21435-6
|
[17] |
Mirzaali MJ,Moosabeiki V,Rajaai SM,et al. Additive manufacturing of biomaterials-design principles and their implementation[J]. Materials (Basel),2022,15(15): 5457. doi: 10.3390/ma15155457
|
[18] |
Xu AT,Zhuang C,Xu SX,et al. Optimized bone regeneration in calvarial bone defect based on biodegradation-tailoring dual-shell biphasic bioactive ceramic microspheres[J]. Sci Rep,2018,8(1): 3385. doi: 10.1038/s41598-018-21778-z
|
[19] |
Lai YX,Cao HJ,Wang XL,et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits[J]. Biomaterials,2018,153: 1-13. doi: 10.1016/j.biomaterials.2017.10.025
|
[20] |
Qin L,Yao D,Zheng LZ,et al. Phytomolecule icaritin incorporated PLGA/TCP scaffold for steroid-associated osteonecrosis:proof-of-concept for prevention of hip joint collapse in bipedal emus and mechanistic study in quadrupedal rabbits[J]. Biomaterials,2015,59: 125-143. doi: 10.1016/j.biomaterials.2015.04.038
|
[21] |
Chen SH,Lei M,Xie XH,et al. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits[J]. Acta Biomater,2013,9(5): 6711-6722. doi: 10.1016/j.actbio.2013.01.024
|
[22] |
Xie XH,Wang XL,Zhang G,et al. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin[J]. J Tissue Eng Regen Med,2015,9(8): 961-972. doi: 10.1002/term.1679
|
[23] |
Jodat YA,Kiaee K,Jarquin DV,et al. A 3D-printed hybrid nasal cartilage with functional electronic olfaction[J]. Adv Sci (Weinh),2020,7(5): 1901878. doi: 10.1002/advs.201901878
|
[24] |
Xie JY,You XQ,Huang YQ,et al. 3D-printed integrative probeheads for magnetic resonance[J]. Nat Commun,2020,11(1): 5793. doi: 10.1038/s41467-020-19711-y
|
[25] |
Dimitriou R,Jones E,McGonagle D,et al. Bone regeneration:current concepts and future directions[J]. BMC Med,2011,9: 66. doi: 10.1186/1741-7015-9-66
|
[26] |
Ragelle H,Tibbitt MW,Wu SY,et al. Surface tension-assisted additive manufacturing[J]. Nat Commun,2018,9(1): 1184. doi: 10.1038/s41467-018-03391-w
|
[27] |
Carluccio D,Xu C,Venezuela J,et al. Additively manufactured iron-Manganese for biodegradable porous load-bearing bone scaffold applications[J]. Acta Biomater,2020,103: 346-360. doi: 10.1016/j.actbio.2019.12.018
|