留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印磷酸钙涂层多孔镁金属支架的力学性能和生物相容性评估

叶健廷 缪铂尊 熊英杰 孟昊业 单验博 孙小涵 卢雨征 武艳斌 林万程 关聪聪 刘修志 王鑫 许文静 袁广银 彭江 周成福

叶健廷, 缪铂尊, 熊英杰, 孟昊业, 单验博, 孙小涵, 卢雨征, 武艳斌, 林万程, 关聪聪, 刘修志, 王鑫, 许文静, 袁广银, 彭江, 周成福. 3D打印磷酸钙涂层多孔镁金属支架的力学性能和生物相容性评估[J]. 解放军医学院学报, 2023, 44(4): 417-423. doi: 10.3969/j.issn.2095-5227.2023.04.016
引用本文: 叶健廷, 缪铂尊, 熊英杰, 孟昊业, 单验博, 孙小涵, 卢雨征, 武艳斌, 林万程, 关聪聪, 刘修志, 王鑫, 许文静, 袁广银, 彭江, 周成福. 3D打印磷酸钙涂层多孔镁金属支架的力学性能和生物相容性评估[J]. 解放军医学院学报, 2023, 44(4): 417-423. doi: 10.3969/j.issn.2095-5227.2023.04.016
YE Jianting, MIAO Bozun, XIONG Yingjie, MENG Haoye, SHAN Yanbo, SUN Xiaohan, LU Yuzheng, WU Yanbin, LIN Wancheng, GUAN Congcong, LIU Xiuzhi, WANG Xin, XU Wenjing, YUAN Guangyin, PENG Jiang, ZHOU Chengfu. Mechanical properties and biocompatibility assessment of 3D printed calcium phosphate coated porous magnesium metal scaffolds[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2023, 44(4): 417-423. doi: 10.3969/j.issn.2095-5227.2023.04.016
Citation: YE Jianting, MIAO Bozun, XIONG Yingjie, MENG Haoye, SHAN Yanbo, SUN Xiaohan, LU Yuzheng, WU Yanbin, LIN Wancheng, GUAN Congcong, LIU Xiuzhi, WANG Xin, XU Wenjing, YUAN Guangyin, PENG Jiang, ZHOU Chengfu. Mechanical properties and biocompatibility assessment of 3D printed calcium phosphate coated porous magnesium metal scaffolds[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2023, 44(4): 417-423. doi: 10.3969/j.issn.2095-5227.2023.04.016

3D打印磷酸钙涂层多孔镁金属支架的力学性能和生物相容性评估

doi: 10.3969/j.issn.2095-5227.2023.04.016
详细信息
    作者简介:

    叶健廷,男,在读硕士。Email: yejianting12@126.com

    缪铂尊,男,在读硕士。Email: miaobozun@sjtu.edu.cn

    通讯作者:

    彭江,男,博士,研究员。Email: pengjiang301@126.com

    周成福,男,学士,主任医师,教授。Email: hyd27zcf@163.com

  • 中图分类号: R658

Mechanical properties and biocompatibility assessment of 3D printed calcium phosphate coated porous magnesium metal scaffolds

More Information
  • 摘要:   背景  负重部位骨松质的大面积缺损修复是临床中一个待解决的难题,多孔镁金属结合磷酸钙(Ca-P)生物活性涂层有望克服这一难题,但缺乏相应力学和生物相容性评价。  目的  评价Ca-P涂层多孔镁金属支架的力学性能和生物相容性。  方法  采用选择性激光熔化3D打印工艺制备多孔镁金属支架,通过化学转化法在多孔纯镁金属支架表面制备Ca-P生物活性涂层,与无涂层镁金属支架做对比。采用扫描电子显微镜和能量色散X射线能谱对材料涂层的形貌、成分进行表征;通过压缩力学实验绘制应力-应变曲线,并计算支架屈服强度和弹性模量。采用CCK-8法、活死染色和细胞黏附等手段检测多孔镁金属支架的生物相容性。  结果  制备Ca-P涂层多孔镁金属支架;扫描电子显微镜和能量色散X线能谱结果显示多孔镁金属支架内部镁颗粒呈现出融合体状;Ca-P涂层由花瓣状晶粒以一定的取向相互堆叠而成,与基体无缝隙紧密结合。力学性能测试显示,Ca-P涂层多孔镁金属支架抗压强度高于无涂层支架[(35.3 ± 0.7) Mpa vs (31.0 ± 1.0) Mpa,P=0.003,n=3],杨氏模量高于无涂层支架[(656.0 ± 8.7) Mpa vs (623.0 ± 7.0) Mpa,P=0.007,n=3];生物相容性结果显示,相比空白组,Ca-P涂层支架有显著促增殖作用,无涂层支架有显著抑制作用。  结论  相比无涂层多孔镁金属支架,Ca-P涂层多孔镁金属支架力学性能优,生物相容性好,可用于负重部位骨松质缺损的修复。

     

  • 图  1  Ca-P 涂层覆盖前后多孔镁样品数字图像(6×)

    A:无涂层支架;B:Ca-P 涂层支架

    Figure  1.  Digital images of porous magnesium samples before and after Ca-P coating (6×)

    A: Non-coated scaffolds; B: Scaffolds coated with Ca-P

    图  2  支架表面形貌和元素图谱分析 (5 000×)

    A、C:无涂层支架及 EDS 能谱分析;B、D:Ca-P涂层支架及EDS能谱分析

    Figure  2.  The surface morphologies and the corresponding elemental mapping images of the scaffolds (5 000×)

    A, C: Non-coated scaffolds and EDS analysis; B, D: Scaffolds coated with Ca-P EDS analysis

    图  3  支架力学性能

    A:应力-应变曲线;B:弹性模量;C:压缩强度

    Figure  3.  The mechanical properties of the scaffolds

    A: Stress-strain curves; B: Elastic modulus; C: Compression modulus

    图  4  CCK-8 法检测细胞在不同支架浸提液中培养 1 d、3 d、5 d的增殖情况

    Figure  4.  Cell counting kit-8 assay showing cell proliferation after culturing in the extract of different scaffolds for 1, 3 and 5 d respectively

    图  5  培养3 d后 MC3T3-E1 细胞活力活/死染色(红色,死亡细胞;绿色,活细胞。6×)

    Figure  5.  Live/dead staining of MC3T3-E1 cell viability after 3 days of culture (red, dead cells; green, live cells. 6×)

    图  6  扫描电子显微镜观察 MC3T3E1 细胞在 Ca-P 涂层支架上的附着情况(500×)

    Figure  6.  Scanning electron microscopy observation of MC3T3-E1 cell attachment on Ca-P coated scaffold (500×)

  • [1] Zhai MM,Zhu Y,Yang MY,et al. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles[J]. Adv Sci (Weinh),2020,7(19): 2001334. doi: 10.1002/advs.202001334
    [2] Rohr N,Fricke K,Bergemann C,et al. Efficacy of plasma-polymerized allylamine coating of zirconia after five years[J]. J Clin Med,2020,9(9): E2776. doi: 10.3390/jcm9092776
    [3] Lai YX,Li Y,Cao HJ,et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect[J]. Biomaterials,2019,197: 207-219. doi: 10.1016/j.biomaterials.2019.01.013
    [4] Qiao W,Wong KHM,Shen J,et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J]. Nat Commun,2021,12(1): 2885. doi: 10.1038/s41467-021-23005-2
    [5] Roguin Maor N,Alperin M,Shturman E,et al. Effect of magnesium oxide supplementation on nocturnal leg cramps:a randomized clinical trial[J]. JAMA Intern Med,2017,177(5): 617-623. doi: 10.1001/jamainternmed.2016.9261
    [6] Wang W,Jia GZ,Wang Q,et al. The in vitro and in vivo biological effects and osteogenic activity of novel biodegradable porous Mg alloy scaffolds[J]. Mater Des,2020,189: 108514. doi: 10.1016/j.matdes.2020.108514
    [7] Wang JL,Xu JK,Hopkins C,et al. Biodegradable magnesium-based implants in orthopedics-a general review and perspectives[J]. Adv Sci (Weinh),2020,7(8): 1902443. doi: 10.1002/advs.201902443
    [8] Wang YC,Liu BY,Zhao XA,et al. Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2[J]. Nat Commun,2018,9(1): 4058. doi: 10.1038/s41467-018-06433-5
    [9] Zhang YX,Lin T,Meng HY,et al. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo[J]. J Orthop Translat,2022,33: 13-23. doi: 10.1016/j.jot.2021.11.005
    [10] Li FY,Chaigne-Delalande B,Kanellopoulou C,et al. Second messenger role for Mg2 + revealed by human T-cell immunodeficiency[J]. Nature,2011,475(7357): 471-476. doi: 10.1038/nature10246
    [11] Zhu DH,You J,Zhao N,et al. Magnesium regulates endothelial barrier functions through TRPM7,MagT1,and S1P1[J]. Adv Sci (Weinh),2019,6(18): 1901166. doi: 10.1002/advs.201901166
    [12] Zhang KY,Jia ZF,Yang BG,et al. Adaptable hydrogels mediate cofactor-assisted activation of biomarker-responsive drug delivery via positive feedback for enhanced tissue regeneration[J]. Adv Sci (Weinh),2018,5(12): 1800875. doi: 10.1002/advs.201800875
    [13] Zhang YF,Xu JK,Ruan YC,et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med,2016,22(10): 1160-1169. doi: 10.1038/nm.4162
    [14] Lin SH,Yang GZ,Jiang F,et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration[J]. Adv Sci (Weinh),2019,6(12): 1900209. doi: 10.1002/advs.201900209
    [15] Wang R,Shi MS,Xu FY,et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection[J]. Nat Commun,2020,11(1): 4465. doi: 10.1038/s41467-020-18267-1
    [16] Li JF,Li ZY,Liu XM,et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing[J]. Nat Commun,2021,12(1): 1224. doi: 10.1038/s41467-021-21435-6
    [17] Mirzaali MJ,Moosabeiki V,Rajaai SM,et al. Additive manufacturing of biomaterials-design principles and their implementation[J]. Materials (Basel),2022,15(15): 5457. doi: 10.3390/ma15155457
    [18] Xu AT,Zhuang C,Xu SX,et al. Optimized bone regeneration in calvarial bone defect based on biodegradation-tailoring dual-shell biphasic bioactive ceramic microspheres[J]. Sci Rep,2018,8(1): 3385. doi: 10.1038/s41598-018-21778-z
    [19] Lai YX,Cao HJ,Wang XL,et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits[J]. Biomaterials,2018,153: 1-13. doi: 10.1016/j.biomaterials.2017.10.025
    [20] Qin L,Yao D,Zheng LZ,et al. Phytomolecule icaritin incorporated PLGA/TCP scaffold for steroid-associated osteonecrosis:proof-of-concept for prevention of hip joint collapse in bipedal emus and mechanistic study in quadrupedal rabbits[J]. Biomaterials,2015,59: 125-143. doi: 10.1016/j.biomaterials.2015.04.038
    [21] Chen SH,Lei M,Xie XH,et al. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits[J]. Acta Biomater,2013,9(5): 6711-6722. doi: 10.1016/j.actbio.2013.01.024
    [22] Xie XH,Wang XL,Zhang G,et al. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin[J]. J Tissue Eng Regen Med,2015,9(8): 961-972. doi: 10.1002/term.1679
    [23] Jodat YA,Kiaee K,Jarquin DV,et al. A 3D-printed hybrid nasal cartilage with functional electronic olfaction[J]. Adv Sci (Weinh),2020,7(5): 1901878. doi: 10.1002/advs.201901878
    [24] Xie JY,You XQ,Huang YQ,et al. 3D-printed integrative probeheads for magnetic resonance[J]. Nat Commun,2020,11(1): 5793. doi: 10.1038/s41467-020-19711-y
    [25] Dimitriou R,Jones E,McGonagle D,et al. Bone regeneration:current concepts and future directions[J]. BMC Med,2011,9: 66. doi: 10.1186/1741-7015-9-66
    [26] Ragelle H,Tibbitt MW,Wu SY,et al. Surface tension-assisted additive manufacturing[J]. Nat Commun,2018,9(1): 1184. doi: 10.1038/s41467-018-03391-w
    [27] Carluccio D,Xu C,Venezuela J,et al. Additively manufactured iron-Manganese for biodegradable porous load-bearing bone scaffold applications[J]. Acta Biomater,2020,103: 346-360. doi: 10.1016/j.actbio.2019.12.018
  • 加载中
图(6)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  73
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回