[1] |
Oh H,Park HJ,Oh J,et al. Hyperechoic pancreas on ultrasonography:an analysis of its severity and clinical implications[J]. Ultrasonography,2022,41(2): 335-343. doi: 10.14366/usg.21099
|
[2] |
Oh J,Park HJ,Lee ES,et al. Severity of hyperechoic pancreas on ultrasonography as a risk factor for glycemic progression[J]. Ultrasonography,2021,40(4): 499-511. doi: 10.14366/usg.20122
|
[3] |
He Y,Jin Y,Li XP,et al. Quantification of pancreatic elasticity in type 2 diabetes:a new potential imaging marker for evaluation of microangiopathy[J]. Eur J Radiol,2020,124: 108827. doi: 10.1016/j.ejrad.2020.108827
|
[4] |
Salah NY,Madkour SS,Soliman KS. Pancreatic shear wave elastography in children with type 1 diabetes:relation to diabetes duration,glycemic indices,fasting C-peptide and diabetic complications[J]. Pediatr Radiol,2022,52(12): 2348-2358. doi: 10.1007/s00247-022-05363-1
|
[5] |
St Clair JR,Ramirez D,Passman S,et al. Contrast-enhanced ultrasound measurement of pancreatic blood flow dynamics predicts type 1 diabetes progression in preclinical models[J]. Nat Commun,2018,9(1): 1742. doi: 10.1038/s41467-018-03953-y
|
[6] |
Ramirez DG,Abenojar E,Hernandez C,et al. Contrast-enhanced ultrasound with sub-micron sized contrast agents detects insulitis in mouse models of type1 diabetes[J]. Nat Commun,2020,11(1): 2238. doi: 10.1038/s41467-020-15957-8
|
[7] |
苏丽平,陈杭,唐苏丹,等. 基于CT图像影像组学模型在糖尿病患者胰腺功能分析中的应用[J]. 中国医学影像学杂志,2022,30(1): 60-65. doi: 10.3969/j.issn.1005-5185.2022.01.013
|
[8] |
Jang S,Kim JH,Choi SY,et al. Application of computerized 3D-CT texture analysis of pancreas for the assessment of patients with diabetes[J]. PLoS One,2020,15(1): e0227492. doi: 10.1371/journal.pone.0227492
|
[9] |
邹斌. 2型糖尿病患者胰腺多排螺旋CT灌注结果分析[J]. 糖尿病新世界,2020,23(18): 34-35. doi: 10.16658/j.cnki.1672-4062.2020.18.034
|
[10] |
Şahan MH,Özdemir A,Asal N,et al. Pancreas and kidney changes in type 2 diabetes patients:the role of diffusion-weighted imaging[J]. Turk J Med Sci,2021,51(3): 1289-1295. doi: 10.3906/sag-2011-176
|
[11] |
Tokunaga A,Imagawa A,Nishio H,et al. Diffusion-weighted magnetic resonance imaging in the pancreas of fulminant type 1 diabetes[J]. Diabetol Int,2018,9(4): 257-265. doi: 10.1007/s13340-018-0355-1
|
[12] |
Canzano JS,Nasif LH,Butterworth EA,et al. Islet microvasculature alterations with loss of beta-cells in patients with type 1 diabetes[J]. J Histochem Cytochem,2019,67(1): 41-52. doi: 10.1369/0022155418778546
|
[13] |
Chen J,Chen JQ,Cheng YH,et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther,2020,11(1): 97. doi: 10.1186/s13287-020-01610-0
|
[14] |
Feng YZ,Ye YJ,Cheng ZY,et al. Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI[J]. Br J Radiol,2020,93(1105): 20190562. doi: 10.1259/bjr.20190562
|
[15] |
陈伯柱. 糖尿病相关胰腺改变的磁共振定量评估[D]. 南京: 南京医科大学, 2018.
|
[16] |
Taso M,Papadopoulou F,Smith MP,et al. Pancreatic perfusion modulation following glucose stimulation assessed by noninvasive arterial spin labeling (ASL) MRI[J]. J Magn Reson Imaging,2020,51(3): 854-860. doi: 10.1002/jmri.26899
|
[17] |
Cline GW,McCarthy TJ,Carson RE,et al. Clinical and scientific value in the pursuit of quantification of beta cells in the pancreas by PET imaging[J]. Diabetologia,2018,61(12): 2671-2673. doi: 10.1007/s00125-018-4718-8
|
[18] |
Balhuizen A,Massa S,Mathijs I,et al. A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells[J]. Sci Rep,2017,7(1): 15130. doi: 10.1038/s41598-017-15417-2
|
[19] |
Demine S,Garcia Ribeiro R,Thevenet J,et al. A nanobody-based nuclear imaging tracer targeting dipeptidyl peptidase 6 to determine the mass of human beta cell grafts in mice[J]. Diabetologia,2020,63(4): 825-836. doi: 10.1007/s00125-019-05068-5
|
[20] |
Tornehave D,Kristensen P,Rømer J,et al. Expression of the GLP-1 receptor in mouse,rat,and human pancreas[J]. J Histochem Cytochem,2008,56(9): 841-851. doi: 10.1369/jhc.2008.951319
|
[21] |
Cheung P,Eriksson O. The current state of beta-cell-mass PET imaging for diabetes research and therapies[J]. Biomedicines,2021,9(12): 1824. doi: 10.3390/biomedicines9121824
|
[22] |
Li LL,Zhao RY,Hong HY,et al. 68Ga-labelled-exendin-4:new GLP1R targeting agents for imaging pancreatic β-cell and insulinoma[J]. Nucl Med Biol,2021,102/103: 87-96. doi: 10.1016/j.nucmedbio.2021.10.001
|
[23] |
Boss M,Buitinga M,Jansen TJP,et al. PET-based human dosimetry of 68Ga-NODAGA-exendin-4,a tracer for β-cell imaging[J]. J Nucl Med,2020,61(1): 112-116. doi: 10.2967/jnumed.119.228627
|
[24] |
Joosten L,Brom M,Peeters H,et al. Measuring the pancreatic β cell mass in vivo with exendin SPECT during hyperglycemia and severe insulitis[J]. Mol Pharm,2019,16(9): 4024-4030. doi: 10.1021/acs.molpharmaceut.9b00728
|
[25] |
Eriksson O,Rosenström U,Selvaraju RK,et al. Species differences in pancreatic binding of DO3A-VS-Cys40-Exendin4[J]. Acta Diabetol,2017,54(11): 1039-1045. doi: 10.1007/s00592-017-1046-2
|
[26] |
Eriksson O,Johnström P,Cselenyi Z,et al. In vivo visualization of β-cells by targeting of GPR44[J]. Diabetes,2018,67(2): 182-192. doi: 10.2337/db17-0764
|
[27] |
Cheung P,Zhang B,Puuvuori E,et al. PET imaging of GPR44 by antagonist[11C]MK-7246 in pigs[J]. Biomedicines,2021,9(4): 434. doi: 10.3390/biomedicines9040434
|
[28] |
Eriksson O. GPR44 as a target for imaging pancreatic beta-cell mass[J]. Curr Diab Rep,2019,19(8): 49. doi: 10.1007/s11892-019-1164-z
|
[29] |
Farino ZJ,Morgenstern TJ,Maffei A,et al. New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion[J]. Mol Psychiatry,2020,25(9): 2070-2085. doi: 10.1038/s41380-018-0344-6
|
[30] |
Bini J,Sanchez-Rangel E,Gallezot JD,et al. PET imaging of pancreatic dopamine D2 and D3 receptor density with 11C-( + )-PHNO in type 1 diabetes[J]. J Nucl Med,2020,61(4): 570-576. doi: 10.2967/jnumed.119.234013
|
[31] |
Wei WJ,Ehlerding EB,Lan XL,et al. Molecular imaging of β-cells:diabetes and beyond[J]. Adv Drug Deliv Rev,2019,139: 16-31. doi: 10.1016/j.addr.2018.06.022
|
[32] |
肖见飞,姜东朗,任树华,等. 2型囊泡单胺转运体分子探针18F-FP-( + )-DTBZ定量1型糖尿病大鼠胰岛β细胞总量纵向研究[J]. 中华内分泌代谢杂志,2019,35(6): 494-498. doi: 10.3760/cma.j.issn.1000-6699.2019.06.009
|
[33] |
Cline GW,Naganawa M,Chen LG,et al. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging[J]. Diabetologia,2018,61(12): 2598-2607. doi: 10.1007/s00125-018-4624-0
|
[34] |
Zhao TJ,Huang QF,Su YN,et al. Zinc and its regulators in pancreas[J]. Inflammopharmacology,2019,27(3): 453-464. doi: 10.1007/s10787-019-00573-w
|
[35] |
Thapa B,Suh EH,Parrott D,et al. Imaging β-cell function using a zinc-responsive MRI contrast agent may identify first responder islets[J]. Front Endocrinol (Lausanne),2021,12: 809867.
|
[36] |
Clavijo Jordan V,Hines CDG,Gantert LT,et al. Imaging beta-cell function in the pancreas of non-human Primates using a zinc-sensitive MRI contrast agent[J]. Front Endocrinol (Lausanne),2021,12: 641722. doi: 10.3389/fendo.2021.641722
|