留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NCX1通过介导钙离子内流损伤足细胞的机制研究

崔少远 傅博 王旭 陈香美

崔少远, 傅博, 王旭, 陈香美. NCX1通过介导钙离子内流损伤足细胞的机制研究[J]. 解放军医学院学报, 2021, 42(1): 71-76. doi: 10.3969/j.issn.2095-5227.2021.01.016
引用本文: 崔少远, 傅博, 王旭, 陈香美. NCX1通过介导钙离子内流损伤足细胞的机制研究[J]. 解放军医学院学报, 2021, 42(1): 71-76. doi: 10.3969/j.issn.2095-5227.2021.01.016
CUI Shaoyuan, FU Bo, WANG Xu, CHEN Xiangmei. Mechanism of NCX1-mediated calcium ions influx in podocyte injury[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2021, 42(1): 71-76. doi: 10.3969/j.issn.2095-5227.2021.01.016
Citation: CUI Shaoyuan, FU Bo, WANG Xu, CHEN Xiangmei. Mechanism of NCX1-mediated calcium ions influx in podocyte injury[J]. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL, 2021, 42(1): 71-76. doi: 10.3969/j.issn.2095-5227.2021.01.016

NCX1通过介导钙离子内流损伤足细胞的机制研究

doi: 10.3969/j.issn.2095-5227.2021.01.016
基金项目: 国家自然科学基金重点项目(81830019)
详细信息
    作者简介:

    崔少远,男,在读硕士,主管技师。研究方向:原发性肾病。Email: cshaoyuan@hotmail.com

    通讯作者:

    陈香美,女,博士,主任医师,中国工程院院士。Email: xmchen301@126.com

  • 中图分类号: R 726.9

Mechanism of NCX1-mediated calcium ions influx in podocyte injury

Funds: Supported by the National Natural Science Foundation of China (81830019)
More Information
  • 摘要:   背景  肾小球滤过屏障由足细胞及足突裂隙膜构成,病理状态下足细胞损伤破坏足突裂隙膜结构,造成肾小球滤过功能改变而产生蛋白尿。钠钙交换蛋白1(sodium-calcium exchanger 1,NCX1)作为Ca2+通道,具有调节钙稳态、维持细胞结构的重要作用。   目的  本研究拟证实NCX1在足细胞损伤中的作用,解析蛋白尿发生的新机制。  方法  建立被动型海曼肾炎(passive Heymann nephritis,PHN)大鼠模型,观察模型的NCX1表达变化;体外培养小鼠足细胞,建立补体激活足细胞损伤模型;Ca2+荧光染色探针Fluo-3检测足细胞胞内Ca2+水平变化;免疫荧光检测足细胞标志物及细胞骨架蛋白表达与结构的变化;Western blot 检测Ca2+下游信号通路蛋白表达的变化;应用NCX1反向模式(reverse mode)抑制剂KB-R7943处理补体激活足细胞损伤模型,观察其是否可有效减轻足细胞损伤。  结果  PHN大鼠模型NCX1表达随造模时间逐渐降低,在21 d达到最低;补体激活足细胞损伤模型NCX1表达亦降低;胞内Ca2+浓度明显升高,活化型RhoA、ROCK1和ROCK2蛋白的表达水平明显增高;NCX1反向模式抑制剂KB-R7943可明显降低胞内Ca2+浓度及下游信号通路蛋白活性及表达水平;补体激活足细胞损伤模型中足细胞标志物Nephrin及Synaptopodin表达减少,细胞骨架蛋白F-actin表达异常,而KB-R7943可显著改善上述异常蛋白表达从而减轻足细胞损伤。  结论  NCX1可通过调控钙离子内流激活下游RhoA/ROCK信号通路改变足细胞骨架结构,损伤足细胞,导致蛋白尿。

     

  • 图  1  免疫荧光染色检测PHN大鼠模型中NCX1的表达(Con组:对照组;PHN模型组7 d、14 d、21 d、28 d;蓝色:细胞核)

    Figure  1.  Expression of NCX1 in PHN rat model detected by immunofluorescence staining (Con: control group; PHN model groups for 7 days, 14 days, 21 days, 28 days; Blue: nuclei)

    图  2  补体激活足细胞损伤模型中NCX1及Ca2+水平的变化(蓝色:细胞核)

    A:足细胞免疫荧光染色NCX1;B和C:足细胞Ca2+荧光染色图像及荧光数据分析;Con:对照组;C5b-9:补体激活足细胞损伤模型组;KB-R7943:NCX1反向模式抑制剂KB-R7943处理组(n=10,C5b-9 vs Con,KB-R7943 vs C5b-9,aP<0.05)

    Figure  2.  Immunofluorescence staining of NCX1 and intracellular Ca2+ in podocytes (Blue: nuclei)

    A: Immunofluorescence staining of NCX1; B and C: Fluorescence imaging and quantitative analysis of Ca2+; Con: Control group; C5b-9: Complement injured podocyte model group; KB-R7943: KB-R7943 treatment group (n=10, C5b-9 vs Con, KB-R7943 vs C5b-9, aP<0.05)

    图  3  Western blot检测RhoA/ROCK信号通路蛋白活性

    Con:对照组;C5b-9:补体激活足细胞损伤模型组;KB-R7943:NCX1反向模式抑制剂KB-R7943处理组(n=5,C5b-9 vs Con,KB-R7943 vs C5b-9,aP<0.05)

    Figure  3.  RhoA/ROCK signaling pathway proteins activities detected by Western blot

    Con: Control group; C5b-9: Complement injured podocyte model group; KB-R7943: KB-R7943 treatment group (n=5, C5b-9 vs Con, KB-R7943 vs C5b-9, aP<0.05)

    图  4  足细胞F-actin、Nephrin和Synaptopodin的表达与结构改变(蓝色:细胞核 )

    A:免疫荧光染色检测F-actin、Nephrin和Synaptopodin;B:荧光数据分析;Con:对照组;C5b-9:补体激活足细胞损伤模型组;KB-R7943组:NCX1反向模式抑制剂KB-R7943处理组(n=12,C5b-9 vs Con,KB-R7943 vs C5b-9,aP<0.05)

    Figure  4.  Immunofluorescence staining of F-actin, Nephrin and Synaptopodin in podocytes (Blue: nuclei)

    A: Immunofluorescence imaging of F-actin, Nephrin and Synaptopodin; B: Quantitative analysis of immunofluorescence images; Con: Control group; C5b-9:Complement injured podocyte model group; KB-R7943: KB-R7943 treatment group (n=12, C5b-9 vs Con, KB-R7943 vs C5b-9, aP<0.05)

  • [1] Snyder S,John JS. Workup for proteinuria[J]. Prim Care,2014,41(4): 719-735. doi: 10.1016/j.pop.2014.08.010
    [2] Garg P. A Review of Podocyte Biology[J]. Am J Nephrol,2018,47 Suppl 1: 3-13.
    [3] Tian X,Ishibe S. Targeting the podocyte cytoskeleton:from pathogenesis to therapy in proteinuric kidney disease[J]. Nephrol Dial Transplant,2016,31(10): 1577-1583. doi: 10.1093/ndt/gfw021
    [4] Kawachi H,Fukusumi Y. New insight into podocyte slit diaphragm,a therapeutic target of proteinuria[J]. Clin Exp Nephrol,2020,24(3): 193-204. doi: 10.1007/s10157-020-01854-3
    [5] Blaine J,Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes[J]. Cells,2020,9(7): 1700. doi: 10.3390/cells9071700
    [6] Riehle M,Büscher AK,Gohlke BO,et al. TRPC6 G757D Loss-of-Function Mutation Associates with FSGS[J]. J Am Soc Nephrol,2016,27(9): 2771-2783. doi: 10.1681/ASN.2015030318
    [7] Rodrigues T,Estevez GNN,Tersariol I. Na(+)/Ca(2+) exchangers:Unexploited opportunities for cancer therapy?[J]. Biochem Pharmacol,2019,163: 357-361. doi: 10.1016/j.bcp.2019.02.032
    [8] Giladi M,Tal I,Khananshvili D. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins[J]. Front Physiol,2016,7: 30.
    [9] Liao QS,Du Q,Lou J,et al. Roles of Na(+)/Ca(2+) exchanger 1 in digestive system physiology and pathophysiology[J]. World J Gastroenterol,2019,25(3): 287-299. doi: 10.3748/wjg.v25.i3.287
    [10] Rose CR,Ziemens D,Verkhratsky A. On the special role of NCX in astrocytes:Translating Na(+)-transients into intracellular Ca(2+) signals[J]. Cell Calcium,2020,86: 102154. doi: 10.1016/j.ceca.2019.102154
    [11] Lytton J. Na+/Ca2+ exchangers:three mammalian gene families control Ca2+ transport[J]. Biochem J,2007,406(3): 365-382. doi: 10.1042/BJ20070619
    [12] Spencer SA,Suárez-Pozos E,Escalante M,et al. Sodium-Calcium Exchangers of the SLC8 Family in Oligodendrocytes:Functional Properties in Health and Disease[J]. Neurochem Res,2020,45(6): 1287-1297. doi: 10.1007/s11064-019-02949-4
    [13] Roome CJ,Power EM,Empson RM. Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[J]. J Neurophysiol,2013,109(6): 1669-1680. doi: 10.1152/jn.00854.2012
    [14] Chang PC,Lu YY,Lee HL,et al. Paradoxical Effects of Sodium-Calcium Exchanger Inhibition on Torsade de Pointes and Early Afterdepolarization in a Heart Failure Rabbit Model[J]. J Cardiovasc Pharmacol,2018,72(2): 97-105. doi: 10.1097/FJC.0000000000000598
    [15] Bögeholz N,Schulte JS,Kaese S,et al. The Effects of SEA0400 on Ca(2+) Transient Amplitude and Proarrhythmia Depend on the Na(+)/Ca(2+) Exchanger Expression Level in Murine Models[J]. Front Pharmacol,2017,8: 649. doi: 10.3389/fphar.2017.00649
    [16] Sherkhane P,Kapfhammer JP. Chronic pharmacological blockade of the Na(+) /Ca(2+) exchanger modulates the growth and development of the Purkinje cell dendritic arbor in mouse cerebellar slice cultures[J]. Eur J Neurosci,2017,46(5): 2108-2120. doi: 10.1111/ejn.13649
    [17] Sunkaria A,Bhardwaj S,Halder A,et al. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling[J]. Mol Neurobiol,2016,53(2): 944-954. doi: 10.1007/s12035-014-9064-3
    [18] Xu J,Yang Y,Xie R,et al. The NCX1/TRPC6 Complex Mediates TGFβ-Driven Migration and Invasion of Human Hepatocellular Carcinoma Cells[J]. Cancer Res,2018,78(10): 2564-2576. doi: 10.1158/0008-5472.CAN-17-2061
    [19] Moor MB,Haenzi B,Legrand F,et al. Renal Memo1 Differentially Regulates the Expression of Vitamin D-Dependent Distal Renal Tubular Calcium Transporters[J]. Front Physiol,2018,9: 874. doi: 10.3389/fphys.2018.00874
    [20] Yamashita J,Kita S,Iwamoto T,et al. Attenuation of ischemia/reperfusion-induced renal injury in mice deficient in Na+/Ca2+ exchanger[J]. J Pharmacol Exp Ther,2003,304(1): 284-293. doi: 10.1124/jpet.102.039024
    [21] Fischer KG,Jonas N,Poschenrieder F,et al. Characterization of a Na(+)-Ca(2+) exchanger in podocytes[J]. Nephrol Dial Transplant,2002,17(10): 1742-1750. doi: 10.1093/ndt/17.10.1742
    [22] Condrescu M,Reeves JP. Actin-dependent regulation of the cardiac Na(+)/Ca(2+) exchanger[J]. Am J Physiol Cell Physiol,2006,290(3): C691-C701. doi: 10.1152/ajpcell.00232.2005
    [23] 邓立菊,王妍敏,付鑫,等. KB-R7943对大鼠心肌缺血再灌注损伤的作用[J]. 中国临床药理学杂志,2019,35(2): 170-172.
    [24] 刘飞君,任俊杰,王慧峰. KB-R7943对大鼠肾动脉血管环舒张作用的机制研究[J]. 中国药物与临床,2019,19(24): 4252-4253.
    [25] Yamashita J,Itoh M,Kuro T,et al. Pre- or post-ischemic treatment with a novel Na+/Ca2+ exchange inhibitor,KB-R7943,shows renal protective effects in rats with ischemic acute renal failure[J]. J Pharmacol Exp Ther,2001,296(2): 412-419.
    [26] Kuro T,Kobayashi Y,Takaoka M,et al. Protective effect of KB-R7943,a novel Na+/Ca2+ exchange inhibitor,on ischemic acute renal failure in rats[J]. Jpn J Pharmacol,1999,81(2): 247-251. doi: 10.1016/S0021-5198(19)30796-6
  • 加载中
图(4)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 网络出版日期:  2021-02-07
  • 刊出日期:  2021-01-28

目录

    /

    返回文章
    返回